spacer
spacer

PDBsum entry 3dkb

Go to PDB code: 
protein Protein-protein interface(s) links
Hydrolase PDB id
3dkb

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
(+ 0 more) 352 a.a. *
* Residue conservation analysis
PDB id:
3dkb
Name: Hydrolase
Title: Crystal structure of a20, 2.5 angstrom
Structure: Tumor necrosis factor, alpha-induced protein 3. Chain: a, b, c, d, e, f. Fragment: unp residues 1-370. Synonym: DNA-binding protein a20, zinc finger protein a20. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: tnfaip3. Expressed in: escherichia coli.
Resolution:
2.50Å     R-factor:   0.200     R-free:   0.246
Authors: S.-C.Lin,J.Y.Chung,Y.-C.Lo,H.Wu
Key ref:
S.C.Lin et al. (2008). Molecular basis for the unique deubiquitinating activity of the NF-kappaB inhibitor A20. J Mol Biol, 376, 526-540. PubMed id: 18164316 DOI: 10.1016/j.jmb.2007.11.092
Date:
24-Jun-08     Release date:   08-Jul-08    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P21580  (TNAP3_HUMAN) -  Tumor necrosis factor alpha-induced protein 3 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
790 a.a.
352 a.a.
Key:    PfamA domain  Secondary structure

 Enzyme reactions 
   Enzyme class 1: E.C.2.3.2.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: E.C.3.4.19.12  - ubiquitinyl hydrolase 1.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Thiol-dependent hydrolysis of ester, thiolester, amide, peptide and isopeptide bonds formed by the C-terminal Gly of ubiquitin (a 76-residue protein attached to proteins as an intracellular targeting signal).
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.

 

 
DOI no: 10.1016/j.jmb.2007.11.092 J Mol Biol 376:526-540 (2008)
PubMed id: 18164316  
 
 
Molecular basis for the unique deubiquitinating activity of the NF-kappaB inhibitor A20.
S.C.Lin, J.Y.Chung, B.Lamothe, K.Rajashankar, M.Lu, Y.C.Lo, A.Y.Lam, B.G.Darnay, H.Wu.
 
  ABSTRACT  
 
Nuclear factor kappaB (NF-kappaB) activation in tumor necrosis factor, interleukin-1, and Toll-like receptor pathways requires Lys63-linked nondegradative polyubiquitination. A20 is a specific feedback inhibitor of NF-kappaB activation in these pathways that possesses dual ubiquitin-editing functions. While the N-terminal domain of A20 is a deubiquitinating enzyme (DUB) for Lys63-linked polyubiquitinated signaling mediators such as TRAF6 and RIP, its C-terminal domain is a ubiquitin ligase (E3) for Lys48-linked degradative polyubiquitination of the same substrates. To elucidate the molecular basis for the DUB activity of A20, we determined its crystal structure and performed a series of biochemical and cell biological studies. The structure reveals the potential catalytic mechanism of A20, which may be significantly different from papain-like cysteine proteases. Ubiquitin can be docked onto a conserved A20 surface; this interaction exhibits charge complementarity and no steric clash. Surprisingly, A20 does not have specificity for Lys63-linked polyubiquitin chains. Instead, it effectively removes Lys63-linked polyubiquitin chains from TRAF6 without dissembling the chains themselves. Our studies suggest that A20 does not act as a general DUB but has the specificity for particular polyubiquitinated substrates to assure its fidelity in regulating NF-kappaB activation in the tumor necrosis factor, interleukin-1, and Toll-like receptor pathways.
 
  Selected figure(s)  
 
Figure 4.
Fig. 4. The predicted interaction of A20 with ubiquitin. (a and b) Mapping of conserved residues on the A20 surface. The location of the active site is circled. (c) Ribbon diagram of A20 with modeled ubiquitins. The locations of the ubiquitin based on the HAUSP–ubiquitin and Yuh1–ubiquitin complexes are shown in gray and orange, respectively. The location of the ubiquitin after adjustment to avoid steric clash is shown in yellow. (d) Surface presentation of A20 shown in complex with the modeled ubiquitin in a ribbon diagram. The active site is circled. (e) Electrostatic surface presentation of A20 shown in complex with the modeled ubiquitin in a ribbon diagram. The ubiquitin-binding site is mostly negatively charged. (f and g) The model of the A20–ubiquitin complex shown with A20 in a ribbon diagram and the ubiquitin in an electrostatic surface representation. The positive electrostatic potential of the side of ubiquitin in contact with A20 is shown. (h) The proposed oxyanion hole construction of A20 by the main-chain amides of Cys103, Gly101, and Asp100. The corresponding regions in Yuh1 and HAUSP are superimposed and shown.
Figure 6.
Fig. 6. Structure-based mutational analyses. (a) Cleavage of Lys48-linked polyubiquitin chains by wild-type and mutant A20. (b) Cleavage of Lys48-linked diubiquitin by wild-type and mutant A20. (c) Deubiquitination of Lys63-linked polyubiquitinated GST-TRAF6 by wild-type and mutant A20. The left panel shows the appearance of ubiquitin chains in the supernatant of glutathione beads. The right panel shows the decrease in the polyubiquitination of GST-TRAF6 bound to glutathione beads.
 
  The above figures are reprinted from an Open Access publication published by Elsevier: J Mol Biol (2008, 376, 526-540) copyright 2008.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
23059429 A.Ma, and B.A.Malynn (2012).
A20: linking a complex regulator of ubiquitylation to immunity and human disease.
  Nat Rev Immunol, 12, 774-785.  
22157957 J.D.Licchesi, J.Mieszczanek, T.E.Mevissen, T.J.Rutherford, M.Akutsu, S.Virdee, F.El Oualid, J.W.Chin, H.Ovaa, M.Bienz, and D.Komander (2012).
An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains.
  Nat Struct Mol Biol, 19, 62-71.
PDB code: 3zrh
22245969 O.W.Huang, X.Ma, J.Yin, J.Flinders, T.Maurer, N.Kayagaki, Q.Phung, I.Bosanac, D.Arnott, V.M.Dixit, S.G.Hymowitz, M.A.Starovasnik, and A.G.Cochran (2012).
Phosphorylation-dependent activity of the deubiquitinase DUBA.
  Nat Struct Mol Biol, 19, 171-175.
PDB codes: 3tmo 3tmp
21448225 C.Grabbe, K.Husnjak, and I.Dikic (2011).
The spatial and temporal organization of ubiquitin networks.
  Nat Rev Mol Cell Biol, 12, 295-307.  
21135870 C.Zheng, Q.Yin, and H.Wu (2011).
Structural studies of NF-κB signaling.
  Cell Res, 21, 183-195.  
21119682 E.W.Harhaj, and V.M.Dixit (2011).
Deubiquitinases in the regulation of NF-κB signaling.
  Cell Res, 21, 22-39.  
21245344 T.W.James, N.Frias-Staheli, J.P.Bacik, J.M.Levingston Macleod, M.Khajehpour, A.García-Sastre, and B.L.Mark (2011).
Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domain-containing protease.
  Proc Natl Acad Sci U S A, 108, 2222-2227.
PDB codes: 3pse 3pt2
21095585 I.Bosanac, I.E.Wertz, B.Pan, C.Yu, S.Kusam, C.Lam, L.Phu, Q.Phung, B.Maurer, D.Arnott, D.S.Kirkpatrick, V.M.Dixit, and S.G.Hymowitz (2010).
Ubiquitin binding to A20 ZnF4 is required for modulation of NF-κB signaling.
  Mol Cell, 40, 548-557.
PDB codes: 3oj3 3oj4
19772915 L.M.Kingeter, and B.C.Schaefer (2010).
Malt1 and cIAP2-Malt1 as effectors of NF-kappaB activation: kissing cousins or distant relatives?
  Cell Signal, 22, 9.  
  20516126 L.M.Staudt (2010).
Oncogenic activation of NF-kappaB.
  Cold Spring Harb Perspect Biol, 2, a000109.  
  20543575 N.Shembade, and E.Harhaj (2010).
A20 inhibition of NFκB and inflammation: targeting E2:E3 ubiquitin enzyme complexes.
  Cell Cycle, 9, 2481-2482.  
20383180 S.G.Hymowitz, and I.E.Wertz (2010).
A20: from ubiquitin editing to tumour suppression.
  Nat Rev Cancer, 10, 332-341.  
19507254 A.Lake, L.A.Shield, P.Cordano, D.T.Chui, J.Osborne, S.Crae, K.S.Wilson, S.Tosi, S.J.Knight, S.Gesk, R.Siebert, R.T.Hay, and R.F.Jarrett (2009).
Mutations of NFKBIA, encoding IkappaB alpha, are a recurrent finding in classical Hodgkin lymphoma but are not a unifying feature of non-EBV-associated cases.
  Int J Cancer, 125, 1334-1342.  
18757776 B.A.Beutler (2009).
TLRs and innate immunity.
  Blood, 113, 1399-1407.  
19008218 B.Coornaert, I.Carpentier, and R.Beyaert (2009).
A20: central gatekeeper in inflammation and immunity.
  J Biol Chem, 284, 8217-8221.  
19489733 B.Skaug, X.Jiang, and Z.J.Chen (2009).
The role of ubiquitin in NF-kappaB regulatory pathways.
  Annu Rev Biochem, 78, 769-796.  
19626045 D.Komander, M.J.Clague, and S.Urbé (2009).
Breaking the chains: structure and function of the deubiquitinases.
  Nat Rev Mol Cell Biol, 10, 550-563.  
19006194 E.Chanudet, H.Ye, J.Ferry, C.Bacon, P.Adam, H.Müller-Hermelink, J.Radford, S.Pileri, K.Ichimura, V.Collins, R.Hamoudi, A.Nicholson, A.Wotherspoon, P.Isaacson, and M.Du (2009).
A20 deletion is associated with copy number gain at the TNFA/B/C locus and occurs preferentially in translocation-negative MALT lymphoma of the ocular adnexa and salivary glands.
  J Pathol, 217, 420-430.  
19243136 F.E.Reyes-Turcu, and K.D.Wilkinson (2009).
Polyubiquitin binding and disassembly by deubiquitinating enzymes.
  Chem Rev, 109, 1495-1508.  
19489724 F.E.Reyes-Turcu, K.H.Ventii, and K.D.Wilkinson (2009).
Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes.
  Annu Rev Biochem, 78, 363-397.  
19233657 F.Renner, and M.L.Schmitz (2009).
Autoregulatory feedback loops terminating the NF-kappaB response.
  Trends Biochem Sci, 34, 128-135.  
19956648 H.Eleftherohorinou, V.Wright, C.Hoggart, A.L.Hartikainen, M.R.Jarvelin, D.Balding, L.Coin, and M.Levin (2009).
Pathway analysis of GWAS provides new insights into genetic susceptibility to 3 inflammatory diseases.
  PLoS One, 4, e8068.  
19909372 H.Shinohara, and T.Kurosaki (2009).
Comprehending the complex connection between PKCbeta, TAK1, and IKK in BCR signaling.
  Immunol Rev, 232, 300-318.  
19570823 J.Wang, Y.Ouyang, Y.Guner, H.R.Ford, and A.V.Grishin (2009).
Ubiquitin-editing enzyme A20 promotes tolerance to lipopolysaccharide in enterocytes.
  J Immunol, 183, 1384-1392.  
19047059 M.W.Popp, K.Artavanis-Tsakonas, and H.L.Ploegh (2009).
Substrate Filtering by the Active Site Crossover Loop in UCHL3 Revealed by Sortagging and Gain-of-function Mutations.
  J Biol Chem, 284, 3593-3602.  
19211026 T.Wang, L.Yin, E.M.Cooper, M.Y.Lai, S.Dickey, C.M.Pickart, D.Fushman, K.D.Wilkinson, R.E.Cohen, and C.Wolberger (2009).
Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1.
  J Mol Biol, 386, 1011-1023.  
19281271 Y.H.Chiu, M.Zhao, and Z.J.Chen (2009).
Ubiquitin in NF-kappaB signaling.
  Chem Rev, 109, 1549-1560.  
18347589 M.Y.Balakirev, and K.D.Wilkinson (2008).
OTU takes the chains OUT.
  Nat Chem Biol, 4, 227-228.  
18535581 S.C.Sun (2008).
Deubiquitylation and regulation of the immune response.
  Nat Rev Immunol, 8, 501-511.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer