spacer
spacer

PDBsum entry 2qs3

Go to PDB code: 
Top Page protein ligands metals Protein-protein interface(s) links
Membrane protein PDB id
2qs3
Contents
Protein chains
251 a.a.
Ligands
1PE ×2
UBE ×2
Metals
_CL ×2
Waters ×409

References listed in PDB file
Key reference
Title Acet is a highly potent and specific kainate receptor antagonist: characterisation and effects on hippocampal mossy fibre function.
Authors S.L.Dargan, V.R.Clarke, G.M.Alushin, J.L.Sherwood, R.Nisticò, Z.A.Bortolotto, A.M.Ogden, D.Bleakman, A.J.Doherty, D.Lodge, M.L.Mayer, S.M.Fitzjohn, D.E.Jane, G.L.Collingridge.
Ref. Neuropharmacology, 2009, 56, 121-130.
PubMed id 18789344
Abstract
Kainate receptors (KARs) are involved in both NMDA receptor-independent long-term potentiation (LTP) and synaptic facilitation at mossy fibre synapses in the CA3 region of the hippocampus. However, the identity of the KAR subtypes involved remains controversial. Here we used a highly potent and selective GluK1 (formerly GluR5) antagonist (ACET) to elucidate roles of GluK1-containing KARs in these synaptic processes. We confirmed that ACET is an extremely potent GluK1 antagonist, with a Kb value of 1.4+/-0.2 nM. In contrast, ACET was ineffective at GluK2 (formerly GluR6) receptors at all concentrations tested (up to 100 microM) and had no effect at GluK3 (formerly GluR7) when tested at 1 microM. The X-ray crystal structure of ACET bound to the ligand binding core of GluK1 was similar to the UBP310-GluK1 complex. In the CA1 region of hippocampal slices, ACET was effective at blocking the depression of both fEPSPs and monosynaptically evoked GABAergic transmission induced by ATPA, a GluK1 selective agonist. In the CA3 region of the hippocampus, ACET blocked the induction of NMDA receptor-independent mossy fibre LTP. To directly investigate the role of pre-synaptic GluK1-containing KARs we combined patch-clamp electrophysiology and 2-photon microscopy to image Ca2+ dynamics in individual giant mossy fibre boutons. ACET consistently reduced short-term facilitation of pre-synaptic calcium transients induced by 5 action potentials evoked at 20-25Hz. Taken together our data provide further evidence for a physiological role of GluK1-containing KARs in synaptic facilitation and LTP induction at mossy fibre-CA3 synapses.
PROCHECK
Go to PROCHECK summary
 Headers

 

spacer

spacer