spacer
spacer

PDBsum entry 2nap

Go to PDB code: 
protein ligands metals links
Oxidoreductase PDB id
2nap

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
720 a.a. *
Ligands
SF4
MGD ×2
MES
Metals
_MO
Waters ×595
* Residue conservation analysis
PDB id:
2nap
Name: Oxidoreductase
Title: Dissimilatory nitrate reductase (nap) from desulfovibrio desulfuricans
Structure: Protein (periplasmic nitrate reductase). Chain: a
Source: Desulfovibrio desulfuricans. Organism_taxid: 876. Collection: atcc 27774. Cellular_location: periplasm
Resolution:
1.90Å     R-factor:   0.218     R-free:   0.267
Authors: J.M.Dias,M.Than,A.Humm,R.Huber,G.Bourenkov,H.Bartunik,S.Bursakov, J.Calvete,J.Caldeira,C.Carneiro,J.Moura,I.Moura,M.J.Romao
Key ref:
J.M.Dias et al. (1999). Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods. Structure, 7, 65-79. PubMed id: 10368307 DOI: 10.1016/S0969-2126(99)80010-0
Date:
18-Sep-98     Release date:   19-Sep-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P81186  (NAPA_DESDA) -  Periplasmic nitrate reductase from Desulfovibrio desulfuricans (strain ATCC 27774 / DSM 6949 / MB)
Seq:
Struc:
 
Seq:
Struc:
755 a.a.
720 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.1.9.6.1  - nitrate reductase (cytochrome).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 2 Fe(II)-[cytochrome] + nitrate + 2 H+ = 2 Fe(III)-[cytochrome] + nitrite + H2O
2 × Fe(II)-[cytochrome]
+ nitrate
+ 2 × H(+)
= 2 × Fe(III)-[cytochrome]
+ nitrite
+ H2O
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1016/S0969-2126(99)80010-0 Structure 7:65-79 (1999)
PubMed id: 10368307  
 
 
Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods.
J.M.Dias, M.E.Than, A.Humm, R.Huber, G.P.Bourenkov, H.D.Bartunik, S.Bursakov, J.Calvete, J.Caldeira, C.Carneiro, J.J.Moura, I.Moura, M.J.Romão.
 
  ABSTRACT  
 
BACKGROUND: The periplasmic nitrate reductase (NAP) from the sulphate reducing bacterium Desulfovibrio desulfuricans ATCC 27774 is induced by growth on nitrate and catalyses the reduction of nitrate to nitrite for respiration. NAP is a molybdenum-containing enzyme with one bis-molybdopterin guanine dinucleotide cluster in a single polypeptide chain of 723 amino acid residues. To date, there is no crystal structure of a nitrate reductase. RESULTS: The first crystal structure of a dissimilatory (respiratory) nitrate reductase was determined at 1.9 A resolution by multiwavelength anomalous diffraction (MAD) methods. The structure is folded into four domains with an alpha/beta-type topology and all four domains are involved in cofactor centre is located near the periphery of the molecule, whereas the MGD cofactor extends across the interior of the molecule interacting with residues from all four domains. The molybdenum atom is located at the cluster. The structure of NAP reveals the details of the catalytic molybdenum site, which is coordinated to two MGD cofactors, Cys140, and a water/hydroxo ligand. A facile electron-transfer pathway through bonds connects the molybdenum and the cluster. CONCLUSIONS: The polypeptide fold of NAP and the arrangement of the cofactors is related to that of Escherichia coli formate dehydrogenase (FDH) and distantly resembles dimethylsulphoxide reductase. The close structural homology of NAP and FDH shows how small changes in the vicinity of the molybdenum catalytic site are sufficient for the substrate specificity.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. The overall fold of NAP. (a) Stereoview of the structure of NAP from Desulfovibrio desulfuricans ATCC 27774 with the different domains coloured: domain I (residues 4–61, 464–492 and 517–561) in red; domain II (residues 62–135, 347–463 and 493–516) in green; domain III (residues 136–346) in yellow; and domain IV (residues 562–723) in blue. The funnel-like cavity, which provides access to the molybdenum catalytic site, can be seen on the upper part of the molecule between domains II and III. (b) Stereoview Cα trace of NAP for domains I and III with residues labelled. (c) Stereoview Cα trace of NAP for domains II and IV with residues labelled. The MGD cofactors and the [4Fe–4S] cluster are shown in ball-and-stick representation. (Figures were prepared with the programs MOLSCRIPT [75] and Raster-3D [76].)
 
  The above figure is reprinted by permission from Cell Press: Structure (1999, 7, 65-79) copyright 1999.  
  Figure was selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
23385464 S.O.Dahms, M.Kuester, C.Streb, C.Roth, N.Sträter, and M.E.Than (2013).
Localization and orientation of heavy-atom cluster compounds in protein crystals using molecular replacement.
  Acta Crystallogr D Biol Crystallogr, 69, 284-297.  
21419779 C.Coelho, P.J.González, J.G.Moura, I.Moura, J.Trincão, and M.João Romão (2011).
The crystal structure of Cupriavidus necator nitrate reductase in oxidized and partially reduced states.
  J Mol Biol, 408, 932-948.
PDB codes: 3ml1 3o5a
20645325 E.Cremades, J.Echeverría, and S.Alvarez (2010).
The trigonal prism in coordination chemistry.
  Chemistry, 16, 10380-10396.  
  20944207 M.D.Miller, L.Aravind, C.Bakolitsa, C.L.Rife, D.Carlton, P.Abdubek, T.Astakhova, H.L.Axelrod, H.J.Chiu, T.Clayton, M.C.Deller, L.Duan, J.Feuerhelm, J.C.Grant, G.W.Han, L.Jaroszewski, K.K.Jin, H.E.Klock, M.W.Knuth, P.Kozbial, S.S.Krishna, A.Kumar, D.Marciano, D.McMullan, A.T.Morse, E.Nigoghossian, L.Okach, R.Reyes, H.van den Bedem, D.Weekes, Q.Xu, K.O.Hodgson, J.Wooley, M.A.Elsliger, A.M.Deacon, A.Godzik, S.A.Lesley, and I.A.Wilson (2010).
Structure of the first representative of Pfam family PF04016 (DUF364) reveals enolase and Rossmann-like folds that combine to form a unique active site with a possible role in heavy-metal chelation.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 66, 1167-1173.
PDB code: 3l5o
19259562 A.Majumdar, K.Pal, and S.Sarkar (2009).
Necessity of fine tuning in Mo(iv) bis(dithiolene) complexes to warrant nitrate reduction.
  Dalton Trans, (), 1927-1938.  
19320747 J.B.Glass, F.Wolfe-Simon, and A.D.Anbar (2009).
Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae.
  Geobiology, 7, 100-123.  
19484273 M.Hofmann (2009).
Density functional theory study of model complexes for the revised nitrate reductase active site in Desulfovibrio desulfuricans NapA.
  J Biol Inorg Chem, 14, 1023-1035.  
19452052 M.J.Romão (2009).
Molybdenum and tungsten enzymes: a crystallographic and mechanistic overview.
  Dalton Trans, (), 4053-4068.  
19360810 N.M.Cerqueira, P.J.Gonzalez, C.D.Brondino, M.J.Romão, C.C.Romão, I.Moura, and J.J.Moura (2009).
The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase.
  J Comput Chem, 30, 2466-2484.  
19050822 R.J.Alcántara-Hernández, C.Valenzuela-Encinas, R.Marsch, and L.Dendooven (2009).
Respiratory and dissimilatory nitrate-reducing communities from an extreme saline alkaline soil of the former lake Texcoco (Mexico).
  Extremophiles, 13, 169-178.  
19206188 S.Groysman, and R.H.Holm (2009).
Biomimetic chemistry of iron, nickel, molybdenum, and tungsten in sulfur-ligated protein sites.
  Biochemistry, 48, 2310-2320.  
18704520 C.Correia, S.Besson, C.D.Brondino, P.J.González, G.Fauque, J.Lampreia, I.Moura, and J.J.Moura (2008).
Biochemical and spectroscopic characterization of the membrane-bound nitrate reductase from Marinobacter hydrocarbonoclasticus 617.
  J Biol Inorg Chem, 13, 1321-1333.  
18327621 S.Najmudin, P.J.González, J.Trincão, C.Coelho, A.Mukhopadhyay, N.M.Cerqueira, C.C.Romão, I.Moura, J.J.Moura, C.D.Brondino, and M.J.Romão (2008).
Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum.
  J Biol Inorg Chem, 13, 737-753.
PDB codes: 2jim 2jio 2jip 2jiq 2jir 2v3v 2v45
18485362 Y.Zhang, and V.N.Gladyshev (2008).
Molybdoproteomes and evolution of molybdenum utilization.
  J Mol Biol, 379, 881-899.  
17130127 B.J.Jepson, S.Mohan, T.A.Clarke, A.J.Gates, J.A.Cole, C.S.Butler, J.N.Butt, A.M.Hemmings, and D.J.Richardson (2007).
Spectropotentiometric and structural analysis of the periplasmic nitrate reductase from Escherichia coli.
  J Biol Chem, 282, 6425-6437.
PDB code: 2nya
  17554176 C.Coelho, P.J.González, J.Trincão, A.L.Carvalho, S.Najmudin, T.Hettman, S.Dieckman, J.J.Moura, I.Moura, and M.J.Romão (2007).
Heterodimeric nitrate reductase (NapAB) from Cupriavidus necator H16: purification, crystallization and preliminary X-ray analysis.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 63, 516-519.  
18021072 E.V.Morozkina, and R.A.Zvyagilskaya (2007).
Nitrate reductases: structure, functions, and effect of stress factors.
  Biochemistry (Mosc), 72, 1151-1160.  
17360611 G.B.Seiffert, G.M.Ullmann, A.Messerschmidt, B.Schink, P.M.Kroneck, and O.Einsle (2007).
Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase.
  Proc Natl Acad Sci U S A, 104, 3073-3077.
PDB code: 2e7z
17600788 K.Pal, P.K.Chaudhury, and S.Sarkar (2007).
Structure of the Michaelis complex and function of the catalytic center in the reductive half-reaction of computational and synthetic models of sulfite oxidase.
  Chem Asian J, 2, 956-964.  
17636351 M.Hofmann (2007).
Density functional theory studies of model complexes for molybdenum-dependent nitrate reductase active sites.
  J Biol Inorg Chem, 12, 989.  
18059531 M.Zhao, X.Jia, C.Wang, Q.Li, K.Zhou, L.Wang, H.Liu, and S.Peng (2007).
PAK: an essential motif for forming beta-turn structures and exhibiting the thrombolytic effect of P6A and its analogs.
  Biochem Cell Biol, 85, 730-740.  
17471372 X.Ma, C.Schulzke, H.G.Schmidt, and M.Noltemeyer (2007).
Structural, electrochemical and oxygen atom transfer properties of a molybdenum selenoether complex [Mo2O4(OC3H6SeC3H6O)2] and its thioether analogue [Mo2O4(OC3H6SC3H6O)2].
  Dalton Trans, (), 1773-1780.  
16962969 D.P.Kloer, C.Hagel, J.Heider, and G.E.Schulz (2006).
Crystal structure of ethylbenzene dehydrogenase from Aromatoleum aromaticum.
  Structure, 14, 1377-1388.
PDB code: 2ivf
16704340 J.F.Stolz, P.Basu, J.M.Santini, and R.S.Oremland (2006).
Arsenic and selenium in microbial metabolism.
  Annu Rev Microbiol, 60, 107-130.  
16760312 J.Lalucat, A.Bennasar, R.Bosch, E.García-Valdés, and N.J.Palleroni (2006).
Biology of Pseudomonas stutzeri.
  Microbiol Mol Biol Rev, 70, 510-547.  
16411255 M.Leopoldini, N.Russo, M.Toscano, M.Dulak, and T.A.Wesolowski (2006).
Mechanism of nitrate reduction by Desulfovibrio desulfuricans nitrate reductase--a theoretical investigation.
  Chemistry, 12, 2532-2541.  
16791644 P.J.González, M.G.Rivas, C.D.Brondino, S.A.Bursakov, I.Moura, and J.J.Moura (2006).
EPR and redox properties of periplasmic nitrate reductase from Desulfovibrio desulfuricans ATCC 27774.
  J Biol Inorg Chem, 11, 609-616.  
15972253 A.Marietou, D.Richardson, J.Cole, and S.Mohan (2005).
Nitrate reduction by Desulfovibrio desulfuricans: a periplasmic nitrate reductase system that lacks NapB, but includes a unique tetraheme c-type cytochrome, NapM.
  FEMS Microbiol Lett, 248, 217-225.  
16235022 C.Noriega, D.J.Hassett, and J.J.Rowe (2005).
The mobA gene is required for assimilatory and respiratory nitrate reduction but not xanthine dehydrogenase activity in Pseudomonas aeruginosa.
  Curr Microbiol, 51, 419-424.  
15520003 E.Nakamaru-Ogiso, T.Yano, T.Yagi, and T.Ohnishi (2005).
Characterization of the iron-sulfur cluster N7 (N1c) in the subunit NuoG of the proton-translocating NADH-quinone oxidoreductase from Escherichia coli.
  J Biol Chem, 280, 301-307.  
15166246 B.J.Jepson, L.J.Anderson, L.M.Rubio, C.J.Taylor, C.S.Butler, E.Flores, A.Herrero, J.N.Butt, and D.J.Richardson (2004).
Tuning a nitrate reductase for function. The first spectropotentiometric characterization of a bacterial assimilatory nitrate reductase reveals novel redox properties.
  J Biol Chem, 279, 32212-32218.  
15311335 J.J.Moura, C.D.Brondino, J.Trincão, and M.J.Romão (2004).
Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases.
  J Biol Inorg Chem, 9, 791-799.  
15355966 L.Loschi, S.J.Brokx, T.L.Hills, G.Zhang, M.G.Bertero, A.L.Lovering, J.H.Weiner, and N.C.Strynadka (2004).
Structural and biochemical identification of a novel bacterial oxidoreductase.
  J Biol Chem, 279, 50391-50400.
PDB codes: 1xdq 1xdy
15551861 O.Einsle, and P.M.Kroneck (2004).
Structural basis of denitrification.
  Biol Chem, 385, 875-883.  
15486691 T.Tomiki, and N.Saitou (2004).
Phylogenetic analysis of proteins associated in the four major energy metabolism systems: photosynthesis, aerobic respiration, denitrification, and sulfur respiration.
  J Mol Evol, 59, 158-176.  
12618432 C.A.Cunha, S.Macieira, J.M.Dias, G.Almeida, L.L.Goncalves, C.Costa, J.Lampreia, R.Huber, J.J.Moura, I.Moura, and M.J.Romão (2003).
Cytochrome c nitrite reductase from Desulfovibrio desulfuricans ATCC 27774. The relevance of the two calcium sites in the structure of the catalytic subunit (NrfA).
  J Biol Chem, 278, 17455-17465.
PDB code: 1oah
12823811 J.Simon, M.Sänger, S.C.Schuster, and R.Gross (2003).
Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein.
  Mol Microbiol, 49, 69-79.  
12948771 M.Jormakka, B.Byrne, and S.Iwata (2003).
Formate dehydrogenase--a versatile enzyme in changing environments.
  Curr Opin Struct Biol, 13, 418-423.  
11939777 A.Brigé, D.Leys, T.E.Meyer, M.A.Cusanovich, and J.J.Van Beeumen (2002).
The 1.25 A resolution structure of the diheme NapB subunit of soluble nitrate reductase reveals a novel cytochrome c fold with a stacked heme arrangement.
  Biochemistry, 41, 4827-4836.
PDB code: 1jni
12067345 C.A.McDevitt, P.Hugenholtz, G.R.Hanson, and A.G.McEwan (2002).
Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes.
  Mol Microbiol, 44, 1575-1587.  
12220497 H.Raaijmakers, S.Macieira, J.M.Dias, S.Teixeira, S.Bursakov, R.Huber, J.J.Moura, I.Moura, and M.J.Romão (2002).
Gene sequence and the 1.8 A crystal structure of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas.
  Structure, 10, 1261-1272.
PDB code: 1h0h
12165429 J.Simon (2002).
Enzymology and bioenergetics of respiratory nitrite ammonification.
  FEMS Microbiol Rev, 26, 285-309.  
11872721 M.Gavira, M.D.Roldán, F.Castillo, and C.Moreno-Vivián (2002).
Regulation of nap gene expression and periplasmic nitrate reductase activity in the phototrophic bacterium Rhodobacter sphaeroides DSM158.
  J Bacteriol, 184, 1693-1702.  
12114025 R.Hille (2002).
Molybdenum and tungsten in biology.
  Trends Biochem Sci, 27, 360-367.  
11223519 A.Brigé, D.Leys, and J.J.Van Beeumen (2001).
Crystallization and preliminary X-ray analysis of the recombinant dihaem cytochrome c (NapB) from Haemophilus influenzae.
  Acta Crystallogr D Biol Crystallogr, 57, 418-420.  
11717511 D.Pignol, J.M.Adriano, J.C.Fontecilla-Camps, and M.Sabaty (2001).
Crystallization and preliminary X-ray analysis of the periplasmic nitrate reductase (NapA-NapB complex) from Rhodobacter sphaeroides f. sp. denitrificans.
  Acta Crystallogr D Biol Crystallogr, 57, 1900-1902.  
11282344 I.Moura, and J.J.Moura (2001).
Structural aspects of denitrifying enzymes.
  Curr Opin Chem Biol, 5, 168-175.  
11250197 P.J.Ellis, T.Conrads, R.Hille, and P.Kuhn (2001).
Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 A and 2.03 A.
  Structure, 9, 125-132.
PDB codes: 1g8j 1g8k
10633089 M.Bernhard, B.Friedrich, and R.A.Siddiqui (2000).
Ralstonia eutropha TF93 is blocked in tat-mediated protein export.
  J Bacteriol, 182, 581-588.  
10702237 S.D.Garton, C.A.Temple, I.K.Dhawan, M.J.Barber, K.V.Rajagopalan, and M.K.Johnson (2000).
Resonance Raman characterization of biotin sulfoxide reductase. Comparing oxomolybdenum enzymes in the ME(2)SO reductase family.
  J Biol Chem, 275, 6798-6805.  
  10542156 C.Moreno-Vivián, P.Cabello, M.Martínez-Luque, R.Blasco, and F.Castillo (1999).
Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases.
  J Bacteriol, 181, 6573-6584.  
10474192 D.A.Flanagan, L.G.Gregory, J.P.Carter, A.Karakas-Sen, D.J.Richardson, and S.Spiro (1999).
Detection of genes for periplasmic nitrate reductase in nitrate respiring bacteria and in community DNA.
  FEMS Microbiol Lett, 177, 263-270.  
10348621 D.J.Richardson, and N.J.Watmough (1999).
Inorganic nitrogen metabolism in bacteria.
  Curr Opin Chem Biol, 3, 207-219.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer