 |
PDBsum entry 1zbj
|
|
|
|
References listed in PDB file
|
 |
|
Key reference
|
 |
|
Title
|
 |
Inferential structure determination.
|
 |
|
Authors
|
 |
W.Rieping,
M.Habeck,
M.Nilges.
|
 |
|
Ref.
|
 |
Science, 2005,
309,
303-306.
[DOI no: ]
|
 |
|
PubMed id
|
 |
|
 |
 |
|
Abstract
|
 |
|
Macromolecular structures calculated from nuclear magnetic resonance data are
not fully determined by experimental data but depend on subjective choices in
data treatment and parameter settings. This makes it difficult to objectively
judge the precision of the structures. We used Bayesian inference to derive a
probability distribution that represents the unknown structure and its
precision. This probability distribution also determines additional unknowns,
such as theory parameters, that previously had to be chosen empirically. We
implemented this approach by using Markov chain Monte Carlo techniques. Our
method provides an objective figure of merit and improves structural quality.
|
 |
 |
 |
|
 |
|
 |
Figure 1.
Fig. 1. Replica-exchange Monte Carlo algorithm. (A) We generate
a stochastic sample (X(k), (k), (k)) from the
joint posterior distribution in an iterative fashion by using
Gibbs sampling (20). The nuisance parameters and are consecutively
drawn from their conditional posterior distributions, with the
values of the other parameters being fixed to their previously
generated values. Coordinates are updated by using the hybrid
Monte Carlo method (21). (B) To overcome energy barriers, we
embed this scheme in a replica-exchange strategy, which
simulates a sequence of heated copies of the system. Samples of
the target distribution are generated in the low-temperature
copy (T[low]) and propagate via stochastic exchanges between
intermediate copies (T[low] < T[i] < T[high]) to the
high-temperature system (T[high]). The temperature T[high] is
chosen such that the polypeptide chain can move freely in order
to escape local modes of the probability density.
|
 |
Figure 3.
Fig. 3. Estimation of nuisance parameters. Posterior histograms
compiled from MCMC samples for the scaling factor in
the ISPA and for the width of the log normal
error distribution. (A) Posterior histogram p( -
|D,I) for the
inverse sixth power of . This factor
corrects interproton distances to match the experimental
distances best. (B) Posterior histogram p( |D,I) for the
error . In conventional
approaches, this analog to the weight (w[data]  -2) can only be
estimated via cross-validation or must be set empirically.
|
 |
|
 |
 |
|
The above figures are
reprinted
by permission from the AAAs:
Science
(2005,
309,
303-306)
copyright 2005.
|
 |
|
Secondary reference #1
|
 |
|
Title
|
 |
Some nmr experiments and a structure determination employing a [15n,2h] enriched protein.
|
 |
|
Authors
|
 |
T.K.Mal,
S.J.Matthews,
H.Kovacs,
I.D.Campbell,
J.Boyd.
|
 |
|
Ref.
|
 |
J Biomol Nmr, 1998,
12,
259-276.
|
 |
|
PubMed id
|
 |
|
 |
 |
|
|
 |
|
|
|
|
 |