spacer
spacer

PDBsum entry 1v9q

Go to PDB code: 
protein ligands metals links
Oxygen storage/transport PDB id
1v9q

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
154 a.a. *
Ligands
PO4 ×6
CZM
Metals
MN3
Waters ×209
* Residue conservation analysis
PDB id:
1v9q
Name: Oxygen storage/transport
Title: Crystal structure of an artificial metalloprotein:mn(iii)(3,3'-me2- salophen)/apo-a71g myoglobin
Structure: Myoglobin. Chain: a. Engineered: yes. Mutation: yes
Source: Physeter catodon. Sperm whale. Organism_taxid: 9755. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
1.45Å     R-factor:   0.206     R-free:   0.218
Authors: T.Ueno,T.Koshiyama,M.Kono,K.Kondo,M.Ohashi,A.Suzuki,T.Yamane, Y.Watanabe
Key ref: T.Ueno et al. (2005). Coordinated design of cofactor and active site structures in development of new protein catalysts. J Am Chem Soc, 127, 6556-6562. PubMed id: 15869276 DOI: 10.1021/ja045995q
Date:
29-Jan-04     Release date:   17-May-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P02185  (MYG_PHYMC) -  Myoglobin from Physeter macrocephalus
Seq:
Struc:
154 a.a.
154 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 

 
DOI no: 10.1021/ja045995q J Am Chem Soc 127:6556-6562 (2005)
PubMed id: 15869276  
 
 
Coordinated design of cofactor and active site structures in development of new protein catalysts.
T.Ueno, T.Koshiyama, M.Ohashi, K.Kondo, M.Kono, A.Suzuki, T.Yamane, Y.Watanabe.
 
  ABSTRACT  
 
New methods for the synthesis of artificial metalloenzymes are important for the construction of novel biocatalysts and biomaterials. Recently, we reported new methodology for the synthesis of artificial metalloenzymes by reconstituting apo-myoglobin with metal complexes (Ohashi, M. et al., Angew Chem., Int. Ed. 2003, 42, 1005-1008). However, it has been difficult to improve their reactivity, since their crystal structures were not available. In this article, we report the crystal structures of M(III)(Schiff base).apo-A71GMbs (M = Cr and Mn). The structures suggest that the position of the metal complex in apo-Mb is regulated by (i) noncovalent interaction between the ligand and surrounding peptides and (ii) the ligation of the metal ion to proximal histidine (His93). In addition, it is proposed that specific interactions of Ile107 with 3- and 3'-substituent groups on the salen ligand control the location of the Schiff base ligand in the active site. On the basis of these results, we have successfully controlled the enantioselectivity in the sulfoxidation of thioanisole by changing the size of substituents at the 3 and 3' positions. This is the first example of an enantioselective enzymatic reaction regulated by the design of metal complex in the protein active site.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21173473 F.Jiang, and W.Ding (2011).
PVMR: assembling small helix fragments as structural solutions for molecular replacement.
  Acta Crystallogr A, 67, 56-62.  
21308129 O.Shoji, and Y.Watanabe (2011).
Design of H2O2-dependent oxidation catalyzed by hemoproteins.
  Metallomics, 3, 379-388.  
20820465 A.Dalla Cort, P.De Bernardin, G.Forte, and F.Y.Mihan (2010).
Metal-salophen-based receptors for anions.
  Chem Soc Rev, 39, 3863-3874.  
20235108 V.Köhler, and T.R.Ward (2010).
Design of a functional nitric oxide reductase within a myoglobin scaffold.
  Chembiochem, 11, 1049-1051.  
19421633 C.A.Kruithof, A.Berger, H.P.Dijkstra, F.Soulimani, T.Visser, M.Lutz, A.L.Spek, R.J.Gebbink, and G.van Koten (2009).
Sulfato-bridged ECE-pincer palladium(II) complexes: structures in the solid-state and in solution, and catalytic properties.
  Dalton Trans, (), 3306-3314.  
19565613 C.H.Kuo, L.Fruk, and C.M.Niemeyer (2009).
Addressable DNA-myoglobin photocatalysis.
  Chem Asian J, 4, 1064-1069.  
19921045 C.L.Davies, E.L.Dux, and A.K.Duhme-Klair (2009).
Supramolecular interactions between functional metal complexes and proteins.
  Dalton Trans, (), 10141-10154.  
19557774 J.L.Zhang, D.K.Garner, L.Liang, D.A.Barrios, and Y.Lu (2009).
Noncovalent modulation of pH-dependent reactivity of a Mn-salen cofactor in myoglobin with hydrogen peroxide.
  Chemistry, 15, 7481-7489.  
19137535 P.Rousselot-Pailley, C.Bochot, C.Marchi-Delapierre, A.Jorge-Robin, L.Martin, J.C.Fontecilla-Camps, C.Cavazza, and S.Ménage (2009).
The protein environment drives selectivity for sulfide oxidation by an artificial metalloenzyme.
  Chembiochem, 10, 545-552.  
18802535 A.Pordea, and T.R.Ward (2008).
Chemogenetic protein engineering: an efficient tool for the optimization of artificial metalloenzymes.
  Chem Commun (Camb), (), 4239-4249.  
18972500 H.Takashima, E.Fujimoto, C.Hirai, and K.Tsukahara (2008).
Synthesis and spectroscopic properties of reconstituted zinc-myoglobin appending a DNA-binding platinum(II) complex.
  Chem Biodivers, 5, 2101-2112.  
18368158 J.L.Zhang, D.K.Garner, L.Liang, Q.Chen, and Y.Lu (2008).
Protein scaffold of a designed metalloenzyme enhances the chemoselectivity in sulfoxidation of thioanisole.
  Chem Commun (Camb), (), 1665-1667.  
19057765 J.Niemeyer, S.Abe, T.Hikage, T.Ueno, G.Erker, and Y.Watanabe (2008).
Noncovalent insertion of ferrocenes into the protein shell of apo-ferritin.
  Chem Commun (Camb), (), 6519-6521.  
18092096 N.Yokoi, T.Ueno, M.Unno, T.Matsui, M.Ikeda-Saito, and Y.Watanabe (2008).
Ligand design for the improvement of stability of metal complex.protein hybrids.
  Chem Commun (Camb), (), 229-231.
PDB code: 2z68
18098245 T.Koshiyama, N.Yokoi, T.Ueno, S.Kanamaru, S.Nagano, Y.Shiro, F.Arisaka, and Y.Watanabe (2008).
Molecular design of heteroprotein assemblies providing a bionanocup as a chemical reactor.
  Small, 4, 50-54.
PDB code: 2z6b
17245492 G.Roelfes (2007).
DNA and RNA induced enantioselectivity in chemical synthesis.
  Mol Biosyst, 3, 126-135.  
17551630 M.Creus, and T.R.Ward (2007).
Designed evolution of artificial metalloenzymes: protein catalysts made to order.
  Org Biomol Chem, 5, 1835-1844.  
17004276 C.Letondor, and T.R.Ward (2006).
Artificial metalloenzymes for enantioselective catalysis: recent advances.
  Chembiochem, 7, 1845-1852.  
16528766 M.T.Reetz, and N.Jiao (2006).
Copper-phthalocyanine conjugates of serum albumins as enantioselective catalysts in Diels-Alder reactions.
  Angew Chem Int Ed Engl, 45, 2416-2419.  
16769893 T.Ueno, N.Yokoi, M.Unno, T.Matsui, Y.Tokita, M.Yamada, M.Ikeda-Saito, H.Nakajima, and Y.Watanabe (2006).
Design of metal cofactors activated by a protein-protein electron transfer system.
  Proc Natl Acad Sci U S A, 103, 9416-9421.
PDB codes: 1wzd 1wzf 1wzg
16900547 Y.Lu (2006).
Biosynthetic inorganic chemistry.
  Angew Chem Int Ed Engl, 45, 5588-5601.  
17140190 Y.Lu (2006).
Metalloprotein and metallo-DNA/RNAzyme design: current approaches, success measures, and future challenges.
  Inorg Chem, 45, 9930-9940.  
16224766 C.A.Kruithof, M.A.Casado, G.Guillena, M.R.Egmond, A.van der Kerk-van Hoof, A.J.Heck, R.J.Klein Gebbink, and G.van Koten (2005).
Lipase active-site-directed anchoring of organometallics: metallopincer/protein hybrids.
  Chemistry, 11, 6869-6877.  
16276543 G.Klein, N.Humbert, J.Gradinaru, A.Ivanova, F.Gilardoni, U.E.Rusbandi, and T.R.Ward (2005).
Tailoring the active site of chemzymes by using a chemogenetic-optimization procedure: towards substrate-specific artificial hydrogenases based on the biotin-avidin technology.
  Angew Chem Int Ed Engl, 44, 7764-7767.  
16193124 M.Skander, C.Malan, A.Ivanova, and T.R.Ward (2005).
Chemical optimization of artificial metalloenzymes based on the biotin-avidin technology: (S)-selective and solvent-tolerant hydrogenation catalysts via the introduction of chiral amino acid spacers.
  Chem Commun (Camb), (), 4815-4817.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer