spacer
spacer

PDBsum entry 1un6

Go to PDB code: 
protein dna_rna metals Protein-protein interface(s) links
RNA-binding protein/RNA PDB id
1un6

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
87 a.a. *
58 a.a. *
DNA/RNA
Metals
_MG ×13
_ZN ×8
Waters ×16
* Residue conservation analysis
PDB id:
1un6
Name: RNA-binding protein/RNA
Title: The crystal structure of a zinc finger - RNA complex reveals two modes of molecular recognition
Structure: Transcription factor iiia. Chain: b, c, d. Fragment: fingers 4,5 and 6, residues 127 - 212 under swissprot numbering for somatic tfiiia. Synonym: tfiiia, factor a, s-tfiiia/o-tfiiia. Engineered: yes. 5s ribosomal RNA. Chain: e, f. Fragment: central region, nucleotides 4 - 15,64 -82,94-115, plus two
Source: Xenopus laevis. African clawed frog. Organism_taxid: 8355. Organ: ovary. Cell: oocyte. Expressed in: escherichia coli. Expression_system_taxid: 469008. Other_details: in vitro transcription to produce the RNA
Biol. unit: Dimer (from PDB file)
Resolution:
3.10Å     R-factor:   0.216     R-free:   0.259
Authors: D.Lu,M.A.Searles,A.Klug
Key ref:
D.Lu et al. (2003). Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition. Nature, 426, 96. PubMed id: 14603324 DOI: 10.1038/nature02088
Date:
04-Sep-03     Release date:   20-Nov-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P03001  (TF3A_XENLA) -  Transcription factor IIIA from Xenopus laevis
Seq:
Struc:
366 a.a.
87 a.a.*
Protein chain
Pfam   ArchSchema ?
P03001  (TF3A_XENLA) -  Transcription factor IIIA from Xenopus laevis
Seq:
Struc:
366 a.a.
58 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

DNA/RNA chains
  G-C-C-G-G-C-C-A-C-A-C-C-U-A-C-G-G-G-G-C-C-U-G-G-U-U-A-G-U-A-C-C-U-G-G-G-A-A-A- 61 bases
  G-C-C-G-G-C-C-A-C-A-C-C-U-A-C-G-G-G-G-C-C-U-G-G-U-U-A-G-U-A-C-C-U-G-G-G-A-A-A- 61 bases

 

 
DOI no: 10.1038/nature02088 Nature 426:96 (2003)
PubMed id: 14603324  
 
 
Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition.
D.Lu, M.A.Searles, A.Klug.
 
  ABSTRACT  
 
Zinc-finger proteins of the classical Cys2His2 type are the most frequently used class of transcription factor and account for about 3% of genes in the human genome. The zinc-finger motif was discovered during biochemical studies on the transcription factor TFIIIA, which regulates the 5S ribosomal RNA genes of Xenopus laevis. Zinc-fingers mostly interact with DNA, but TFIIIA binds not only specifically to the promoter DNA, but also to 5S RNA itself. Increasing evidence indicates that zinc-fingers are more widely used to recognize RNA. There have been numerous structural studies on DNA binding, but none on RNA binding by zinc-finger proteins. Here we report the crystal structure of a three-finger complex with 61 bases of RNA, derived from the central regions of the complete nine-finger TFIIIA-5S RNA complex. The structure reveals two modes of zinc-finger binding, both of which differ from that in common use for DNA: first, the zinc-fingers interact with the backbone of a double helix; and second, the zinc-fingers specifically recognize individual bases positioned for access in otherwise intricately folded 'loop' regions of the RNA.
 
  Selected figure(s)  
 
Figure 3.
Figure 3: Recognition of loop E by finger 4. a, Structure of loop E. The chains are coloured as in Fig. 2a. Hydrogen bonds are shown in red, and base stacking in green. Stacking interactions are assigned according to the degree of overlap and have separation distances shorter than 3.8 Å. b, Interaction of loop E with the N terminus of the helix of finger 4. Colours are the same as in a, with peptide side chains in yellow. The hydrogen-bond interactions between protein and RNA are listed in Fig. 2c. The bulged base 75G is gripped by hydrogen bonds from Asp 120 and His 119, and its ribose by a hydrogen bond from Lys 118.
Figure 4.
Figure 4: Recognition of loop A by finger 6. a, Structure of loop A. Three colours are used to indicate the three-way junction, blue and purple as in Figs 2 and 3, but with nucleotides 64-68 in orange. b, Interaction of loop A with the N terminus of the helix of finger 6. Peptide side chains are shown in yellow. The ring of Trp 177 docks on the face of base 11A, and the two flanking residues, Thr 176 and Thr 178, make hydrogen bonds to base 10C. Trp 177 also makes a hydrogen bond to the ribose of 13A.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2003, 426, 96-0) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21241883 C.Dominguez, M.Schubert, O.Duss, S.Ravindranathan, and F.H.Allain (2011).
Structure determination and dynamics of protein-RNA complexes by NMR spectroscopy.
  Prog Nucl Magn Reson Spectrosc, 58, 1.  
21358629 J.P.Mackay, J.Font, and D.J.Segal (2011).
The prospects for designer single-stranded RNA-binding proteins.
  Nat Struct Mol Biol, 18, 256-261.  
  21410645 M.Doetsch, R.Schroeder, and B.Fürtig (2011).
Transient RNA-protein interactions in RNA folding.
  FEBS J, 278, 1634-1642.  
21253649 S.M.Quintal, Q.A.dePaula, and N.P.Farrell (2011).
Zinc finger proteins as templates for metal ion exchange and ligand reactivity. Chemical and biological consequences.
  Metallomics, 3, 121-139.  
20223772 X.J.Lu, W.K.Olson, and H.J.Bussemaker (2010).
The RNA backbone plays a crucial role in mediating the intrinsic stability of the GpU dinucleotide platform and the GpUpA/GpA miniduplex.
  Nucleic Acids Res, 38, 4868-4876.  
19325628 D.A.Pomeranz Krummel, C.Oubridge, A.K.Leung, J.Li, and K.Nagai (2009).
Crystal structure of human spliceosomal U1 snRNP at 5.5 A resolution.
  Nature, 458, 475-480.
PDB code: 3cw1
19179334 D.F.Estrada, D.M.Boudreaux, D.Zhong, S.C.St Jeor, and R.N.De Guzman (2009).
The Hantavirus Glycoprotein G1 Tail Contains Dual CCHC-type Classical Zinc Fingers.
  J Biol Chem, 284, 8654-8660.
PDB code: 2k9h
19304800 F.E.Loughlin, R.E.Mansfield, P.M.Vaz, A.P.McGrath, S.Setiyaputra, R.Gamsjaeger, E.S.Chen, B.J.Morris, J.M.Guss, and J.P.Mackay (2009).
The zinc fingers of the SR-like protein ZRANB2 are single-stranded RNA-binding domains that recognize 5' splice site-like sequences.
  Proc Natl Acad Sci U S A, 106, 5581-5586.
PDB code: 3g9y
19217400 H.Tidow, A.Andreeva, T.J.Rutherford, and A.R.Fersht (2009).
Solution structure of the U11-48K CHHC zinc-finger domain that specifically binds the 5' splice site of U12-type introns.
  Structure, 17, 294-302.
PDB codes: 2vy4 2vy5
19646998 S.H.Mishra, A.M.Spring, and M.W.Germann (2009).
Thermodynamic profiling of HIV RREIIB RNA-zinc finger interactions.
  J Mol Biol, 393, 369-382.  
18314502 A.Smirnov, I.Tarassov, A.M.Mager-Heckel, M.Letzelter, R.P.Martin, I.A.Krasheninnikov, and N.Entelis (2008).
Two distinct structural elements of 5S rRNA are needed for its import into human mitochondria.
  RNA, 14, 749-759.  
18253864 K.J.Brayer, and D.J.Segal (2008).
Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains.
  Cell Biochem Biophys, 50, 111-131.  
18286240 K.J.Brayer, S.Kulshreshtha, and D.J.Segal (2008).
The protein-binding potential of C2H2 zinc finger domains.
  Cell Biochem Biophys, 51, 9.  
19043415 M.Teplova, and D.J.Patel (2008).
Structural insights into RNA recognition by the alternative-splicing regulator muscleblind-like MBNL1.
  Nat Struct Mol Biol, 15, 1343-1351.
PDB codes: 3d2n 3d2q 3d2s
18794366 X.Guo, N.L.Ernst, and K.D.Stuart (2008).
The KREPA3 zinc finger motifs and OB-fold domain are essential for RNA editing and survival of Trypanosoma brucei.
  Mol Cell Biol, 28, 6939-6953.  
18790803 Y.Chen, J.Mandic, and G.Varani (2008).
Cell-free selection of RNA-binding proteins using in vitro compartmentalization.
  Nucleic Acids Res, 36, e128.  
17473849 B.M.Lunde, C.Moore, and G.Varani (2007).
RNA-binding proteins: modular design for efficient function.
  Nat Rev Mol Cell Biol, 8, 479-490.  
17335000 D.Lu, and A.Klug (2007).
Invariance of the zinc finger module: a comparison of the free structure with those in nucleic-acid complexes.
  Proteins, 67, 508-512.
PDB code: 2j7j
17656577 F.He, T.Umehara, K.Tsuda, M.Inoue, T.Kigawa, T.Matsuda, T.Yabuki, M.Aoki, E.Seki, T.Terada, M.Shirouzu, A.Tanaka, S.Sugano, Y.Muto, and S.Yokoyama (2007).
Solution structure of the zinc finger HIT domain in protein FON.
  Protein Sci, 16, 1577-1587.
PDB code: 1x4s
17626105 M.A.Tijms, D.D.Nedialkova, J.C.Zevenhoven-Dobbe, A.E.Gorbalenya, and E.J.Snijder (2007).
Arterivirus subgenomic mRNA synthesis and virion biogenesis depend on the multifunctional nsp1 autoprotease.
  J Virol, 81, 10496-10505.  
17702765 Y.Yuan, S.A.Compton, K.Sobczak, M.G.Stenberg, C.A.Thornton, J.D.Griffith, and M.S.Swanson (2007).
Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs.
  Nucleic Acids Res, 35, 5474-5486.  
17974562 Z.R.Belak, and N.Ovsenek (2007).
Assembly of the Yin Yang 1 transcription factor into messenger ribonucleoprotein particles requires direct RNA binding activity.
  J Biol Chem, 282, 37913-37920.  
16732192 A.V.Giesecke, R.Fang, and J.K.Joung (2006).
Synthetic protein-protein interaction domains created by shuffling Cys2His2 zinc-fingers.
  Mol Syst Biol, 2, 2006.2011.  
16404131 C.Fan, J.Yan, Y.Qian, X.Wo, and L.Gao (2006).
Regulation of lipoprotein lipase expression by effect of hawthorn flavonoids on peroxisome proliferator response element pathway.
  J Pharmacol Sci, 100, 51-58.  
16429156 F.C.Oberstrass, A.Lee, R.Stefl, M.Janis, G.Chanfreau, and F.H.Allain (2006).
Shape-specific recognition in the structure of the Vts1p SAM domain with RNA.
  Nat Struct Mol Biol, 13, 160-167.
PDB codes: 2es5 2es6 2ese
16645816 G.J.Kornhaber, D.Snyder, H.N.Moseley, and G.T.Montelione (2006).
Identification of zinc-ligated cysteine residues based on 13Calpha and 13Cbeta chemical shift data.
  J Biomol NMR, 34, 259-269.  
17101125 M.Howard-Ashby, S.C.Materna, C.T.Brown, Q.Tu, P.Oliveri, R.A.Cameron, and E.H.Davidson (2006).
High regulatory gene use in sea urchin embryogenesis: Implications for bilaterian development and evolution.
  Dev Biol, 300, 27-34.  
16826557 S.H.Mishra, C.M.Shelley, D.J.Barrow, M.K.Darby, and M.W.Germann (2006).
Solution structures and characterization of human immunodeficiency virus Rev responsive element IIB RNA targeting zinc finger proteins.
  Biopolymers, 83, 352-364.
PDB codes: 2ab3 2ab7
16445281 S.Ladame, J.A.Schouten, J.Roldan, J.E.Redman, S.Neidle, and S.Balasubramanian (2006).
Exploring the recognition of quadruplex DNA by an engineered Cys2-His2 zinc finger protein.
  Biochemistry, 45, 1393-1399.  
16270100 A.Lingel, B.Simon, E.Izaurralde, and M.Sattler (2005).
The structure of the flock house virus B2 protein, a viral suppressor of RNA interference, shows a novel mode of double-stranded RNA recognition.
  EMBO Rep, 6, 1149-1155.
PDB code: 2b9z
16116439 A.Longo, C.W.Leonard, G.S.Bassi, D.Berndt, J.M.Krahn, T.M.Hall, and K.M.Weeks (2005).
Evolution from DNA to RNA recognition by the bI3 LAGLIDADG maturase.
  Nat Struct Mol Biol, 12, 779-787.
PDB code: 2ab5
16122968 A.M.Bonvin, R.Boelens, and R.Kaptein (2005).
NMR analysis of protein interactions.
  Curr Opin Chem Biol, 9, 501-508.  
15888446 K.L.Brady, S.N.Ponnampalam, M.J.Bumbulis, and D.R.Setzer (2005).
Mutations in TFIIIA that increase stability of the TFIIIA-5 S rRNA gene complex: unusual effects on the kinetics of complex assembly and dissociation.
  J Biol Chem, 280, 26743-26750.  
15643449 R.Stefl, L.Skrisovska, and F.H.Allain (2005).
RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle.
  EMBO Rep, 6, 33-38.  
15963892 T.M.Hall (2005).
Multiple modes of RNA recognition by zinc finger proteins.
  Curr Opin Struct Biol, 15, 367-373.  
15853794 Y.Chen, and G.Varani (2005).
Protein families and RNA recognition.
  FEBS J, 272, 2088-2097.  
15363898 B.Lehner, and A.G.Fraser (2004).
Protein domains enriched in mammalian tissue-specific or widely expressed genes.
  Trends Genet, 20, 468-472.  
15200961 H.Zhang, A.Christoforou, L.Aravind, S.W.Emmons, S.van den Heuvel, and D.A.Haber (2004).
The C. elegans Polycomb gene SOP-2 encodes an RNA binding protein.
  Mol Cell, 14, 841-847.  
15342650 L.Jeffery, and S.Nakielny (2004).
Components of the DNA methylation system of chromatin control are RNA-binding proteins.
  J Biol Chem, 279, 49479-49487.  
15234987 R.J.Simpson, S.H.Yi Lee, N.Bartle, E.Y.Sum, J.E.Visvader, J.M.Matthews, J.P.Mackay, and M.Crossley (2004).
A classic zinc finger from friend of GATA mediates an interaction with the coiled-coil of transforming acidic coiled-coil 3.
  J Biol Chem, 279, 39789-39797.
PDB code: 1srk
14634631 J.M.Berg (2003).
Fingering nucleic acids: the RNA did it.
  Nat Struct Biol, 10, 986-987.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer