spacer
spacer

PDBsum entry 1t83

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Immune system PDB id
1t83

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
210 a.a. *
167 a.a. *
Ligands
NAG-NAG-BMA-MAN-
NDG-GAL-BMA-FUL
NAG-NDG-BMA-MAN-
NAG-MAN-NAG-FUL
HG2
Waters ×120
* Residue conservation analysis
PDB id:
1t83
Name: Immune system
Title: Crystal structure of a human type iii fc gamma receptor in complex with an fc fragment of igg1 (orthorhombic)
Structure: Igg1. Chain: a, b. Fragment: fc. Low affinity immunoglobulin gamma fc region receptor iii-b. Chain: c. Fragment: fc gamma receptor type iii. Synonym: igg fc receptor iii-1, fc-gamma riii-beta, fc-gamma riiib, fcriiib, fc-gamma riii, fcriii, cd16-b, fcr-10. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 469008.
Biol. unit: Trimer (from PQS)
Resolution:
3.00Å     R-factor:   0.226     R-free:   0.282
Authors: S.Radaev,S.Motyka,W.-H.Fridman,C.Sautes-Fridman,P.D.Sun
Key ref:
S.Radaev et al. (2001). The structure of a human type III Fcgamma receptor in complex with Fc. J Biol Chem, 276, 16469-16477. PubMed id: 11297532 DOI: 10.1074/jbc.M100350200
Date:
11-May-04     Release date:   28-Sep-04    
Supersedes: 1iis
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P01857  (IGHG1_HUMAN) -  Immunoglobulin heavy constant gamma 1 from Homo sapiens
Seq:
Struc:
399 a.a.
210 a.a.*
Protein chain
Pfam   ArchSchema ?
O75015  (FCG3B_HUMAN) -  Low affinity immunoglobulin gamma Fc region receptor III-B from Homo sapiens
Seq:
Struc:
233 a.a.
167 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 

 
DOI no: 10.1074/jbc.M100350200 J Biol Chem 276:16469-16477 (2001)
PubMed id: 11297532  
 
 
The structure of a human type III Fcgamma receptor in complex with Fc.
S.Radaev, S.Motyka, W.H.Fridman, C.Sautes-Fridman, P.D.Sun.
 
  ABSTRACT  
 
Fcgamma receptors mediate antibody-dependent inflammatory responses and cytotoxicity as well as certain autoimmune dysfunctions. Here we report the crystal structure of a human Fc receptor (FcgammaRIIIB) in complex with an Fc fragment of human IgG1 determined from orthorhombic and hexagonal crystal forms at 3.0- and 3.5-A resolution, respectively. The refined structures from the two crystal forms are nearly identical with no significant discrepancies between the coordinates. Regions of the C-terminal domain of FcgammaRIII, including the BC, C'E, FG loops, and the C' beta-strand, bind asymmetrically to the lower hinge region, residues Leu(234)-Pro(238), of both Fc chains creating a 1:1 receptor-ligand stoichiometry. Minor conformational changes are observed in both the receptor and Fc upon complex formation. Hydrophobic residues, hydrogen bonds, and salt bridges are distributed throughout the receptor.Fc interface. Sequence comparisons of the receptor-ligand interface residues suggest a conserved binding mode common to all members of immunoglobulin-like Fc receptors. Structural comparison between FcgammaRIII.Fc and FcepsilonRI.Fc complexes highlights the differences in ligand recognition between the high and low affinity receptors. Although not in direct contact with the receptor, the carbohydrate attached to the conserved glycosylation residue Asn(297) on Fc may stabilize the conformation of the receptor-binding epitope on Fc. An antibody-FcgammaRIII model suggests two possible ligand-induced receptor aggregations.
 
  Selected figure(s)  
 
Figure 6.
Fig. 6. Antibody-Fc RIII binding and ligand induced receptor aggregation model. A, an intact antibody-Fc RIII binding model. The structure of the antibody is shown in magenta and that of Fc RIII is in green. The position of the second possible orientation of Fc RIII, which is in direct steric conflict with the hinge region and Fab, is indicated by a blue-shaded area. The arrow points to the location of the lower hinge (L.H.). The Protein Data Bank entry for the antibody coordinates is 1IGT. B, a simple avidity model of antigen-antibody binding induced Fc RIII aggregation. C, an ordered receptor aggregation model.
Figure 7.
Fig. 7. Recognition of Fc by multiple ligands. Structural comparison among the complexes of (A) Fc RIIIB-Fc; (B) FcRn-Fc (PDB entry 1FRT); (C) rheumatoid factors RF-Fc (PDB entry 1ADQ); and (D) bacterial protein A-Fc (PDB entry 1FC2). Protein G binds similar to Fc as does protein A. Due to its symmetric interaction with ligand, only one chain of Fc is shown in the FcRn·Fc, RF·Fc and protein A·Fc complexes. The corresponding Fc regions are colored in cyan and shown in similar orientations. The ligands to Fc are colored in green and the [2]-microglobulin of FcRn is shown in red. Only the variable domain of RF is shown. The carbohydrates are shown in ball-and-stick models.
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (2001, 276, 16469-16477) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22460124 P.M.Hogarth, and G.A.Pietersz (2012).
Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond.
  Nat Rev Drug Discov, 11, 311-331.  
21258329 A.W.Barb, and J.H.Prestegard (2011).
NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic.
  Nat Chem Biol, 7, 147-153.  
21327607 D.C.Nguyen, F.Scinicariello, and R.Attanasio (2011).
Characterization and allelic polymorphisms of rhesus macaque (Macaca mulatta) IgG Fc receptor genes.
  Immunogenetics, 63, 351-362.  
21383176 J.Lu, K.D.Marjon, L.L.Marnell, R.Wang, C.Mold, T.W.Du Clos, and P.Sun (2011).
Recognition and functional activation of the human IgA receptor (FcalphaRI) by C-reactive protein.
  Proc Natl Acad Sci U S A, 108, 4974-4979.  
21516097 M.D.Holdom, A.M.Davies, J.E.Nettleship, S.C.Bagby, B.Dhaliwal, E.Girardi, J.Hunt, H.J.Gould, A.J.Beavil, J.M.McDonnell, R.J.Owens, and B.J.Sutton (2011).
Conformational changes in IgE contribute to its uniquely slow dissociation rate from receptor FcɛRI.
  Nat Struct Mol Biol, 18, 571-576.
PDB codes: 2wqr 2y7q
21287620 N.Chennamsetty, V.Voynov, V.Kayser, B.Helk, and B.L.Trout (2011).
Prediction of protein binding regions.
  Proteins, 79, 888-897.  
20146709 H.A.Niederer, M.R.Clatworthy, L.C.Willcocks, and K.G.Smith (2010).
FcgammaRIIB, FcgammaRIIIB, and systemic lupus erythematosus.
  Ann N Y Acad Sci, 1183, 69-88.  
20639190 H.H.von Horsten, C.Ogorek, V.Blanchard, C.Demmler, C.Giese, K.Winkler, M.Kaup, M.Berger, I.Jordan, and V.Sandig (2010).
Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-D-lyxo-4-hexulose reductase.
  Glycobiology, 20, 1607-1618.  
19546861 Y.Levin, L.Wang, E.Schwarz, D.Koethe, F.M.Leweke, and S.Bahn (2010).
Global proteomic profiling reveals altered proteomic signature in schizophrenia serum.
  Mol Psychiatry, 15, 1088-1100.  
21029072 Y.Machino, H.Ohta, E.Suzuki, S.Higurashi, T.Tezuka, H.Nagashima, J.Kohroki, and Y.Masuho (2010).
Effect of immunoglobulin G (IgG) interchain disulfide bond cleavage on efficacy of intravenous immunoglobulin for immune thrombocytopenic purpura (ITP).
  Clin Exp Immunol, 162, 415-424.  
  19920917 A.Natsume, R.Niwa, and M.Satoh (2009).
Improving effector functions of antibodies for cancer treatment: Enhancing ADCC and CDC.
  Drug Des Devel Ther, 3, 7.  
19265386 D.Houde, J.Arndt, W.Domeier, S.Berkowitz, and J.R.Engen (2009).
Characterization of IgG1 conformation and conformational dynamics by hydrogen/deuterium exchange mass spectrometry.
  Anal Chem, 81, 2644-2651.
PDB code: 3fzu
19048248 J.E.Butler, N.Wertz, N.Deschacht, and I.Kacskovics (2009).
Porcine IgG: structure, genetics, and evolution.
  Immunogenetics, 61, 209-230.  
18952826 M.Shibata-Koyama, S.Iida, A.Okazaki, K.Mori, K.Kitajima-Miyama, S.Saitou, S.Kakita, Y.Kanda, K.Shitara, K.Kato, and M.Satoh (2009).
The N-linked oligosaccharide at Fc gamma RIIIa Asn-45: an inhibitory element for high Fc gamma RIIIa binding affinity to IgG glycoforms lacking core fucosylation.
  Glycobiology, 19, 126-134.  
  20065644 N.Yamane-Ohnuki, and M.Satoh (2009).
Production of therapeutic antibodies with controlled fucosylation.
  MAbs, 1, 230-236.  
19815504 R.J.Brezski, O.Vafa, D.Petrone, S.H.Tam, G.Powers, M.H.Ryan, J.L.Luongo, A.Oberholtzer, D.M.Knight, and R.E.Jordan (2009).
Tumor-associated and microbial proteases compromise host IgG effector functions by a single cleavage proximal to the hinge.
  Proc Natl Acad Sci U S A, 106, 17864-17869.  
19247305 R.Jefferis (2009).
Glycosylation as a strategy to improve antibody-based therapeutics.
  Nat Rev Drug Discov, 8, 226-234.  
19552968 R.Jefferis (2009).
Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action.
  Trends Pharmacol Sci, 30, 356-362.  
18957574 S.Bonetto, L.Spadola, A.G.Buchanan, L.Jermutus, and J.Lund (2009).
Identification of cyclic peptides able to mimic the functional epitope of IgG1-Fc for human Fc gammaRI.
  FASEB J, 23, 575-585.  
19615335 X.Xiao, Y.Feng, B.K.Vu, R.Ishima, and D.S.Dimitrov (2009).
A large library based on a novel (CH2) scaffold: identification of HIV-1 inhibitors.
  Biochem Biophys Res Commun, 387, 387-392.  
  20065648 Y.Luo, Z.Lu, S.W.Raso, C.Entrican, and B.Tangarone (2009).
Dimers and multimers of monoclonal IgG1 exhibit higher in vitro binding affinities to Fcgamma receptors.
  MAbs, 1, 491-504.  
18216124 E.R.Sprague, H.Reinhard, E.J.Cheung, A.H.Farley, R.D.Trujillo, H.Hengel, and P.J.Bjorkman (2008).
The human cytomegalovirus Fc receptor gp68 binds the Fc CH2-CH3 interface of immunoglobulin G.
  J Virol, 82, 3490-3499.  
18064051 F.Nimmerjahn, and J.V.Ravetch (2008).
Fcgamma receptors as regulators of immune responses.
  Nat Rev Immunol, 8, 34-47.  
19011614 J.Lu, L.L.Marnell, K.D.Marjon, C.Mold, T.W.Du Clos, and P.D.Sun (2008).
Structural recognition and functional activation of FcgammaR by innate pentraxins.
  Nature, 456, 989-992.
PDB code: 3d5o
18931413 P.Prabakaran, B.K.Vu, J.Gan, Y.Feng, D.S.Dimitrov, and X.Ji (2008).
Structure of an isolated unglycosylated antibody C(H)2 domain.
  Acta Crystallogr D Biol Crystallogr, 64, 1062-1067.
PDB code: 3dj9
19074274 S.L.Sazinsky, R.G.Ott, N.W.Silver, B.Tidor, J.V.Ravetch, and K.D.Wittrup (2008).
Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors.
  Proc Natl Acad Sci U S A, 105, 20167-20172.  
18625238 T.I.Arnon, J.T.Kaiser, A.P.West, R.Olson, R.Diskin, B.C.Viertlboeck, T.W.Göbel, and P.J.Bjorkman (2008).
The crystal structure of CHIR-AB1: a primordial avian classical Fc receptor.
  J Mol Biol, 381, 1012-1024.
PDB code: 2vsd
18363992 X.Y.Liu, L.M.Pop, and E.S.Vitetta (2008).
Engineering therapeutic monoclonal antibodies.
  Immunol Rev, 222, 9.  
18771295 Y.Wei, C.Li, W.Huang, B.Li, S.Strome, and L.X.Wang (2008).
Glycoengineering of human IgG1-Fc through combined yeast expression and in vitro chemoenzymatic glycosylation.
  Biochemistry, 47, 10294-10304.  
17318528 A.Arouri, P.Garidel, W.Kliche, and A.Blume (2007).
Hydrophobic interactions are the driving force for the binding of peptide mimotopes and Staphylococcal protein A to recombinant human IgG1.
  Eur Biophys J, 36, 647-660.  
17558411 M.Hirano, R.S.Davis, W.D.Fine, S.Nakamura, K.Shimizu, H.Yagi, K.Kato, R.P.Stephan, and M.D.Cooper (2007).
IgEb immune complexes activate macrophages through FcgammaRIV binding.
  Nat Immunol, 8, 762-771.  
17727329 R.Jefferis (2007).
Antibody therapeutics: isotype and glycoform selection.
  Expert Opin Biol Ther, 7, 1401-1413.  
17240158 S.Sibéril, C.A.Dutertre, W.H.Fridman, and J.L.Teillaud (2007).
FcgammaR: The key to optimize therapeutic antibodies?
  Crit Rev Oncol Hematol, 62, 26-33.  
16646632 E.R.Sprague, C.Wang, D.Baker, and P.J.Bjorkman (2006).
Crystal structure of the HSV-1 Fc receptor bound to Fc reveals a mechanism for antibody bipolar bridging.
  PLoS Biol, 4, e148.
PDB codes: 2giy 2gj7
16531813 K.Barbin, J.Stieglmaier, D.Saul, K.Stieglmaier, B.Stockmeyer, M.Pfeiffer, P.Lang, and G.H.Fey (2006).
Influence of variable N-glycosylation on the cytolytic potential of chimeric CD19 antibodies.
  J Immunother (1997), 29, 122-133.  
17049014 M.Satoh, S.Iida, and K.Shitara (2006).
Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies.
  Expert Opin Biol Ther, 6, 1161-1173.  
16699187 S.Radaev, S.Li, and P.D.Sun (2006).
A survey of protein-protein complex crystallizations.
  Acta Crystallogr D Biol Crystallogr, 62, 605-612.  
16323243 T.E.Michaelsen, J.E.Thommesen, O.Ihle, T.F.Gregers, R.H.Sandin, O.H.Brekke, and I.Sandlie (2006).
A mutant human IgG molecule with only one C1q binding site can activate complement and induce lysis of target cells.
  Eur J Immunol, 36, 129-138.  
17100877 Y.T.Bryceson, M.E.March, H.G.Ljunggren, and E.O.Long (2006).
Activation, coactivation, and costimulation of resting human natural killer cells.
  Immunol Rev, 214, 73-91.  
15757489 A.Nakamura, K.Akiyama, and T.Takai (2005).
Fc receptor targeting in the treatment of allergy, autoimmune diseases and cancer.
  Expert Opin Ther Targets, 9, 169-190.  
15903235 R.Jefferis (2005).
Glycosylation of recombinant antibody therapeutics.
  Biotechnol Prog, 21, 11-16.  
15642266 R.Pudas, T.R.Kiema, P.J.Butler, M.Stewart, and J.Ylänne (2005).
Structural basis for vertebrate filamin dimerization.
  Structure, 13, 111-119.
PDB code: 1v05
16203869 Y.T.Bryceson, M.E.March, D.F.Barber, H.G.Ljunggren, and E.O.Long (2005).
Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells.
  J Exp Med, 202, 1001-1012.  
15245367 G.Bertrand, E.Duprat, M.P.Lefranc, J.Marti, and J.Coste (2004).
Characterization of human FCGR3B*02 (HNA-1b, NA2) cDNAs and IMGT standardized description of FCGR3B alleles.
  Tissue Antigens, 64, 119-131.  
15040582 J.M.Woof, and D.R.Burton (2004).
Human antibody-Fc receptor interactions illuminated by crystal structures.
  Nat Rev Immunol, 4, 89-99.  
15352059 N.Yamane-Ohnuki, S.Kinoshita, M.Inoue-Urakubo, M.Kusunoki, S.Iida, R.Nakano, M.Wakitani, R.Niwa, M.Sakurada, K.Uchida, K.Shitara, and M.Satoh (2004).
Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity.
  Biotechnol Bioeng, 87, 614-622.  
12886289 B.A.Wurzburg, and T.S.Jardetzky (2003).
The IgA receptor complex: a two-for-one deal.
  Nat Struct Biol, 10, 585-587.  
14632661 B.Drescher, T.Witte, and R.E.Schmidt (2003).
Glycosylation of FcgammaRIII in N163 as mechanism of regulating receptor affinity.
  Immunology, 110, 335-340.  
12500981 H.J.Gould, B.J.Sutton, A.J.Beavil, R.L.Beavil, N.McCloskey, H.A.Coker, D.Fear, and L.Smurthwaite (2003).
The biology of IGE and the basis of allergic disease.
  Annu Rev Immunol, 21, 579-628.  
14646085 M.Yang, G.Xu, S.Li, L.Sun, N.Shi, W.Zeng, H.Pang, W.Zhang, and Z.Rao (2003).
Crystallization and preliminary crystallographic analysis of the extracellular fragment of FcalphaRI/CD89.
  Acta Crystallogr D Biol Crystallogr, 59, 2251-2253.  
12694568 N.M.van Sorge, W.L.van der Pol, and J.G.van de Winkel (2003).
FcgammaR polymorphisms: Implications for function, disease susceptibility and immunotherapy.
  Tissue Antigens, 61, 189-202.  
11891275 F.Facchetti, M.Cella, S.Festa, D.H.Fremont, and M.Colonna (2002).
An unusual Fc receptor-related protein expressed in human centroblasts.
  Proc Natl Acad Sci U S A, 99, 3776-3781.  
12447901 P.A.Ramsland, and W.Farrugia (2002).
Crystal structures of human antibodies: a detailed and unfinished tapestry of immunoglobulin gene products.
  J Mol Recognit, 15, 248-259.  
12413532 P.M.Hogarth (2002).
Fc receptors are major mediators of antibody based inflammation in autoimmunity.
  Curr Opin Immunol, 14, 798-802.  
11754823 S.Radaev, B.Rostro, A.G.Brooks, M.Colonna, and P.D.Sun (2001).
Conformational plasticity revealed by the cocrystal structure of NKG2D and its class I MHC-like ligand ULBP3.
  Immunity, 15, 1039-1049.
PDB code: 1kcg
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer