 |
PDBsum entry 1v05
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Actin-binding protein
|
PDB id
|
|
|
|
1v05
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Structure
13:111-119
(2005)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural basis for vertebrate filamin dimerization.
|
|
R.Pudas,
T.R.Kiema,
P.J.Butler,
M.Stewart,
J.Ylänne.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Filamins are essential in cell motility and many developmental processes. They
are large actin cross linking proteins that contain actin binding domains in
their N termini and a long rod region constructed from 24 tandem Ig domains.
Dimerization is crucial for the actin crosslinking function of filamins and
requires the most C-terminal Ig domain. We describe here the crystal structure
of this 24th Ig domain (Ig24) of human filamin C and show how it mediates
dimerization. The dimer interface is novel and quite different to that seen in
the Dictyostelium discoideum filamin analog. The sequence signature of the
dimerization interface suggests that the C-terminal domains of all vertebrate
filamins share the same dimerization mechanism. Furthermore, we show that point
mutations in the dimerization interface disrupt the dimer and that the
dissociation constant for recombinant Ig24 is in the micromolar range.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
Figure 4.
Figure 4. Filamin Domain 24 Dimerization Interface (A)
The hydrophobic stacking of strand C in the dimer interface.
Side chains of Met2669 pack against Gly2671 of the neighboring
monomer, creating hydrophobic interactions. (B) Hydrogen
bonding between the monomers at strand D.
|
 |
|
|
|
| |
The above figure is
reprinted
by permission from Cell Press:
Structure
(2005,
13,
111-119)
copyright 2005.
|
|
| |
Figure was
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.X.Zhou,
J.H.Hartwig,
and
L.M.Akyürek
(2010).
Filamins in cell signaling, transcription and organ development.
|
| |
Trends Cell Biol,
20,
113-123.
|
 |
|
|
|
|
 |
B.A.Kesner,
F.Ding,
B.R.Temple,
and
N.V.Dokholyan
(2010).
N-terminal strands of filamin Ig domains act as a conformational switch under biological forces.
|
| |
Proteins,
78,
12-24.
|
 |
|
|
|
|
 |
F.Sauer,
J.Vahokoski,
Y.H.Song,
and
M.Wilmanns
(2010).
Molecular basis of the head-to-tail assembly of giant muscle proteins obscurin-like 1 and titin.
|
| |
EMBO Rep,
11,
534-540.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Falet,
A.Y.Pollitt,
A.J.Begonja,
S.E.Weber,
D.Duerschmied,
D.D.Wagner,
S.P.Watson,
and
J.H.Hartwig
(2010).
A novel interaction between FlnA and Syk regulates platelet ITAM-mediated receptor signaling and function.
|
| |
J Exp Med,
207,
1967-1979.
|
 |
|
|
|
|
 |
F.Nakamura,
O.Heikkinen,
O.T.Pentikäinen,
T.M.Osborn,
K.E.Kasza,
D.A.Weitz,
O.Kupiainen,
P.Permi,
I.Kilpeläinen,
J.Ylänne,
J.H.Hartwig,
and
T.P.Stossel
(2009).
Molecular basis of filamin A-FilGAP interaction and its impairment in congenital disorders associated with filamin A mutations.
|
| |
PLoS ONE,
4,
e4928.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.S.Chen,
K.S.Kolahi,
and
M.R.Mofrad
(2009).
Phosphorylation facilitates the integrin binding of filamin under force.
|
| |
Biophys J,
97,
3095-3104.
|
 |
|
|
|
|
 |
M.D.Seo,
S.H.Seok,
H.Im,
A.R.Kwon,
S.J.Lee,
H.R.Kim,
Y.Cho,
D.Park,
and
B.J.Lee
(2009).
Crystal structure of the dimerization domain of human filamin A.
|
| |
Proteins,
75,
258-263.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Pinotsis,
P.Abrusci,
K.Djinović-Carugo,
and
M.Wilmanns
(2009).
Terminal assembly of sarcomeric filaments by intermolecular beta-sheet formation.
|
| |
Trends Biochem Sci,
34,
33-39.
|
 |
|
|
|
|
 |
S.S.Ithychanda,
D.Hsu,
H.Li,
L.Yan,
D.D.Liu,
D.Liu,
M.Das,
E.F.Plow,
and
J.Qin
(2009).
Identification and characterization of multiple similar ligand-binding repeats in filamin: implication on filamin-mediated receptor clustering and cross-talk.
|
| |
J Biol Chem,
284,
35113-35121.
|
 |
|
|
|
|
 |
S.S.Ithychanda,
M.Das,
Y.Q.Ma,
K.Ding,
X.Wang,
S.Gupta,
C.Wu,
E.F.Plow,
and
J.Qin
(2009).
Migfilin, a molecular switch in regulation of integrin activation.
|
| |
J Biol Chem,
284,
4713-4722.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Farrington-Rock,
V.Kirilova,
L.Dillard-Telm,
A.D.Borowsky,
S.Chalk,
M.J.Rock,
D.H.Cohn,
and
D.Krakow
(2008).
Disruption of the Flnb gene in mice phenocopies the human disease spondylocarpotarsal synostosis syndrome.
|
| |
Hum Mol Genet,
17,
631-641.
|
 |
|
|
|
|
 |
N.Pinotsis,
S.Lange,
J.C.Perriard,
D.I.Svergun,
and
M.Wilmanns
(2008).
Molecular basis of the C-terminal tail-to-tail assembly of the sarcomeric filament protein myomesin.
|
| |
EMBO J,
27,
253-264.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Lad,
P.Jiang,
S.Ruskamo,
D.S.Harburger,
J.Ylänne,
I.D.Campbell,
and
D.A.Calderwood
(2008).
Structural Basis of the Migfilin-Filamin Interaction and Competition with Integrin {beta} Tails.
|
| |
J Biol Chem,
283,
35154-35163.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.H.Aguda,
A.M.Sakwe,
L.Rask,
and
R.C.Robinson
(2007).
Expression, crystallization and preliminary crystallographic data analysis of filamin A repeats 14-16.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
63,
291-293.
|
 |
|
|
|
|
 |
F.Nakamura,
T.M.Osborn,
C.A.Hartemink,
J.H.Hartwig,
and
T.P.Stossel
(2007).
Structural basis of filamin A functions.
|
| |
J Cell Biol,
179,
1011-1025.
|
 |
|
|
|
|
 |
Y.Lad,
T.Kiema,
P.Jiang,
O.T.Pentikäinen,
C.H.Coles,
I.D.Campbell,
D.A.Calderwood,
and
J.Ylänne
(2007).
Structure of three tandem filamin domains reveals auto-inhibition of ligand binding.
|
| |
EMBO J,
26,
3993-4004.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Farrington-Rock,
M.H.Firestein,
L.S.Bicknell,
A.Superti-Furga,
C.A.Bacino,
V.Cormier-Daire,
M.Le Merrer,
C.Baumann,
J.Roume,
P.Rump,
J.B.Verheij,
E.Sweeney,
D.L.Rimoin,
R.S.Lachman,
S.P.Robertson,
D.H.Cohn,
and
D.Krakow
(2006).
Mutations in two regions of FLNB result in atelosteogenesis I and III.
|
| |
Hum Mutat,
27,
705-710.
|
 |
|
|
|
|
 |
F.Nakamura,
R.Pudas,
O.Heikkinen,
P.Permi,
I.Kilpeläinen,
A.D.Munday,
J.H.Hartwig,
T.P.Stossel,
and
J.Ylänne
(2006).
The structure of the GPIb-filamin A complex.
|
| |
Blood,
107,
1925-1932.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.M.Popowicz,
M.Schleicher,
A.A.Noegel,
and
T.A.Holak
(2006).
Filamins: promiscuous organizers of the cytoskeleton.
|
| |
Trends Biochem Sci,
31,
411-419.
|
 |
|
|
|
|
 |
T.Kiema,
Y.Lad,
P.Jiang,
C.L.Oxley,
M.Baldassarre,
K.L.Wegener,
I.D.Campbell,
J.Ylänne,
and
D.A.Calderwood
(2006).
The molecular basis of filamin binding to integrins and competition with talin.
|
| |
Mol Cell,
21,
337-347.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Vorgerd,
P.F.van der Ven,
V.Bruchertseifer,
T.Lowe,
R.A.Kley,
R.Schroder,
H.Lochmuller,
M.Himmel,
K.Koehler,
D.O.Furst,
and
A.Huebner
(2005).
A mutation in the dimerization domain of filamin c causes a novel type of autosomal dominant myofibrillar myopathy.
|
| |
Am J Hum Genet,
77,
297-304.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |