 |
PDBsum entry 1t5t
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.7.2.2.10
- P-type Ca(2+) transporter.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Ca2+(in) + ATP + H2O = Ca2+(out) + ADP + phosphate + H+
|
 |
 |
 |
 |
 |
Ca(2+)(in)
|
+
|
ATP
|
+
|
H2O
|
=
|
Ca(2+)(out)
Bound ligand (Het Group name = )
corresponds exactly
|
+
|
ADP
|
+
|
phosphate
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Cofactor:
|
 |
Mg(2+)
|
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Science
304:1672-1675
(2004)
|
|
PubMed id:
|
|
|
|
|
| |
|
Phosphoryl transfer and calcium ion occlusion in the calcium pump.
|
|
T.L.Sørensen,
J.V.Møller,
P.Nissen.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
A tight coupling between adenosine triphosphate (ATP) hydrolysis and vectorial
ion transport has to be maintained by ATP-consuming ion pumps. We report two
crystal structures of Ca2+-bound sarco(endo)plasmic reticulum Ca2+-adenosine
triphosphatase (SERCA) at 2.6 and 2.9 angstrom resolution in complex with (i) a
nonhydrolyzable ATP analog [adenosine (beta-gamma methylene)-triphosphate] and
(ii) adenosine diphosphate plus aluminum fluoride. SERCA reacts with ATP by an
associative mechanism mediated by two Mg2+ ions to form an
aspartyl-phosphorylated intermediate state (Ca2-E1 approximately P). The
conformational changes that accompany the reaction with ATP pull the
transmembrane helices 1 and 2 and close a cytosolic entrance for Ca2+, thereby
preventing backflow before Ca2+ is released on the other side of the membrane.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Fig. 2. Conformational changes upon nucleotide binding.
Comparison of the Ca[2]-E[1] and Ca[2]-E[1]-AMPPCP forms, based
on the same alignment as in Fig. 1C. Domains occupying similar
positions are shown as colored surfaces with the coordination
spheres of the two calcium ions in blue. The series of
conformational changes leading from ATP binding to Ca^2+
occlusion have been indicated by arrows on the Ca[2]-E[1] form.
The figure was prepared with PyMOL (26).
|
 |
Figure 3.
Fig. 3. The Mg2+-catalyzed phosphoryl transferase activity. (A)
Overview of Mg: AMPPCP binding, shown with a ball-and-stick
representation of interacting residues. The color scheme is the
same as in Fig. 1C. The bent conformation of the nucleotide,
stabilized primarily by three arginines, can be seen. (B)
Coordination of the -phosphate and
Asp351 by a magnesium ion. The Asp351 side chain is still far
from the -phosphorus atom.
(C) The transition state of phosphoryl transfer as mimicked by
ADP:AlF[4]^-. The Mg2+ ion coordinates Asp351 and AlF[4]^-, and
the ß-phosphate and the Asp351 side chain form tight
coordination of the aluminum atom as indicated by dashed lines
in color. Residues important for stabilization are indicated.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from the AAAs:
Science
(2004,
304,
1672-1675)
copyright 2004.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
C.Toyoshima,
S.Yonekura,
J.Tsueda,
and
S.Iwasawa
(2011).
Trinitrophenyl derivatives bind differently from parent adenine nucleotides to Ca2+-ATPase in the absence of Ca2+.
|
| |
Proc Natl Acad Sci U S A,
108,
1833-1838.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.P.Drew,
M.Hrmova,
C.Lunde,
A.K.Jacobs,
M.Tester,
and
G.B.Fincher
(2011).
Structural and functional analyses of PpENA1 provide insights into cation binding by type IID P-type ATPases in lower plants and fungi.
|
| |
Biochim Biophys Acta,
1808,
1483-1492.
|
 |
|
|
|
|
 |
G.T.Johnson,
L.Autin,
D.S.Goodsell,
M.F.Sanner,
and
A.J.Olson
(2011).
ePMV embeds molecular modeling into professional animation software environments.
|
| |
Structure,
19,
293-303.
|
 |
|
|
|
|
 |
J.P.Morth,
B.P.Pedersen,
M.J.Buch-Pedersen,
J.P.Andersen,
B.Vilsen,
M.G.Palmgren,
and
P.Nissen
(2011).
A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps.
|
| |
Nat Rev Mol Cell Biol,
12,
60-70.
|
 |
|
|
|
|
 |
M.G.Palmgren,
and
P.Nissen
(2011).
P-type ATPases.
|
| |
Annu Rev Biophys,
40,
243-266.
|
 |
|
|
|
|
 |
M.Gustavsson,
N.J.Traaseth,
C.B.Karim,
E.L.Lockamy,
D.D.Thomas,
and
G.Veglia
(2011).
Lipid-Mediated Folding/Unfolding of Phospholamban as a Regulatory Mechanism for the Sarcoplasmic Reticulum Ca(2+)-ATPase.
|
| |
J Mol Biol,
408,
755-765.
|
 |
|
|
|
|
 |
P.Gourdon,
X.Y.Liu,
T.Skjørringe,
J.P.Morth,
L.B.Møller,
B.P.Pedersen,
and
P.Nissen
(2011).
Crystal structure of a copper-transporting PIB-type ATPase.
|
| |
Nature,
475,
59-64.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.K.Naik,
M.Srivastava,
P.Bajaj,
S.Jain,
A.Dubey,
P.Ranjan,
R.Kumar,
and
H.Singh
(2011).
The binding modes and binding affinities of artemisinin derivatives with Plasmodium falciparum Ca(2+)-ATPase (PfATP6).
|
| |
J Mol Model,
17,
333-357.
|
 |
|
|
|
|
 |
H.Suzuki,
K.Yamasaki,
T.Daiho,
and
S.Danko
(2010).
[Mechanism of ca(2+) pump as revealed by mutations, development of stable analogs of phosphorylated intermediates, and their structural analyses].
|
| |
Yakugaku Zasshi,
130,
179-189.
|
 |
|
|
|
|
 |
J.V.Møller,
C.Olesen,
A.M.Winther,
and
P.Nissen
(2010).
The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump.
|
| |
Q Rev Biophys,
43,
501-566.
|
 |
|
|
|
|
 |
K.Ekberg,
B.P.Pedersen,
D.M.Sørensen,
A.K.Nielsen,
B.Veierskov,
P.Nissen,
M.G.Palmgren,
and
M.J.Buch-Pedersen
(2010).
Structural identification of cation binding pockets in the plasma membrane proton pump.
|
| |
Proc Natl Acad Sci U S A,
107,
21400-21405.
|
 |
|
|
|
|
 |
K.McLuskey,
A.W.Roszak,
Y.Zhu,
and
N.W.Isaacs
(2010).
Crystal structures of all-alpha type membrane proteins.
|
| |
Eur Biophys J,
39,
723-755.
|
 |
|
|
|
|
 |
M.Bublitz,
H.Poulsen,
J.P.Morth,
and
P.Nissen
(2010).
In and out of the cation pumps: P-type ATPase structure revisited.
|
| |
Curr Opin Struct Biol,
20,
431-439.
|
 |
|
|
|
|
 |
N.Vedovato,
and
D.C.Gadsby
(2010).
The two C-terminal tyrosines stabilize occluded Na/K pump conformations containing Na or K ions.
|
| |
J Gen Physiol,
136,
63-82.
|
 |
|
|
|
|
 |
Q.Ye,
S.W.Crawley,
Y.Yang,
G.P.Côté,
and
Z.Jia
(2010).
Crystal structure of the alpha-kinase domain of Dictyostelium myosin heavy chain kinase A.
|
| |
Sci Signal,
3,
ra17.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Meier,
N.N.Tavraz,
K.L.Dürr,
and
T.Friedrich
(2010).
Hyperpolarization-activated inward leakage currents caused by deletion or mutation of carboxy-terminal tyrosines of the Na+/K+-ATPase {alpha} subunit.
|
| |
J Gen Physiol,
135,
115-134.
|
 |
|
|
|
|
 |
T.C.Terwilliger
(2010).
Rapid model building of alpha-helices in electron-density maps.
|
| |
Acta Crystallogr D Biol Crystallogr,
66,
268-275.
|
 |
|
|
|
|
 |
Y.Sugita,
M.Ikeguchi,
and
C.Toyoshima
(2010).
Relationship between Ca2+-affinity and shielding of bulk water in the Ca2+-pump from molecular dynamics simulations.
|
| |
Proc Natl Acad Sci U S A,
107,
21465-21469.
|
 |
|
|
|
|
 |
A.Pilotelle-Bunner,
F.Cornelius,
P.Sebban,
P.W.Kuchel,
and
R.J.Clarke
(2009).
Mechanism of Mg2+ binding in the Na+,K+-ATPase.
|
| |
Biophys J,
96,
3753-3761.
|
 |
|
|
|
|
 |
A.Takeuchi,
N.Reyes,
P.Artigas,
and
D.C.Gadsby
(2009).
Visualizing the mapped ion pathway through the Na,K-ATPase pump.
|
| |
Channels (Austin),
3,
383-386.
|
 |
|
|
|
|
 |
C.L.Sodré,
B.L.Moreira,
J.R.Meyer-Fernandes,
P.M.Dutra,
A.H.Lopes,
H.M.Scofano,
and
H.Barrabin
(2009).
Characterization of Ca2+ uptake in a subcellular membrane fraction of Herpetomonas sp. promastigotes.
|
| |
Parasitology,
136,
657-663.
|
 |
|
|
|
|
 |
D.A.Middleton,
E.Hughes,
N.U.Fedosova,
and
M.Esmann
(2009).
Solid-state NMR studies of adenosine 5'-triphosphate freeze-trapped in the nucleotide site of Na,K-ATPase.
|
| |
Chembiochem,
10,
1789-1792.
|
 |
|
|
|
|
 |
D.C.Gadsby
(2009).
Ion channels versus ion pumps: the principal difference, in principle.
|
| |
Nat Rev Mol Cell Biol,
10,
344-352.
|
 |
|
|
|
|
 |
D.C.Gadsby,
A.Takeuchi,
P.Artigas,
and
N.Reyes
(2009).
Review. Peering into an ATPase ion pump with single-channel recordings.
|
| |
Philos Trans R Soc Lond B Biol Sci,
364,
229-238.
|
 |
|
|
|
|
 |
D.J.Bigelow
(2009).
Nitrotyrosine-modified SERCA2: a cellular sensor of reactive nitrogen species.
|
| |
Pflugers Arch,
457,
701-710.
|
 |
|
|
|
|
 |
I.Vandecaetsbeek,
M.Trekels,
M.De Maeyer,
H.Ceulemans,
E.Lescrinier,
L.Raeymaekers,
F.Wuytack,
and
P.Vangheluwe
(2009).
Structural basis for the high Ca2+ affinity of the ubiquitous SERCA2b Ca2+ pump.
|
| |
Proc Natl Acad Sci U S A,
106,
18533-18538.
|
 |
|
|
|
|
 |
L.T.Chen,
Q.Yao,
T.A.Soares,
T.C.Squier,
and
D.J.Bigelow
(2009).
Phospholamban modulates the functional coupling between nucleotide domains in Ca-ATPase oligomeric complexes in cardiac sarcoplasmic reticulum.
|
| |
Biochemistry,
48,
2411-2421.
|
 |
|
|
|
|
 |
M.Brini
(2009).
Plasma membrane Ca(2+)-ATPase: from a housekeeping function to a versatile signaling role.
|
| |
Pflugers Arch,
457,
657-664.
|
 |
|
|
|
|
 |
M.J.Buch-Pedersen,
B.P.Pedersen,
B.Veierskov,
P.Nissen,
and
M.G.Palmgren
(2009).
Protons and how they are transported by proton pumps.
|
| |
Pflugers Arch,
457,
573-579.
|
 |
|
|
|
|
 |
M.Kubala,
L.Grycova,
Z.Lansky,
P.Sklenovsky,
M.Janovska,
M.Otyepka,
and
J.Teisinger
(2009).
Changes in electrostatic surface potential of Na+/K+-ATPase cytoplasmic headpiece induced by cytoplasmic ligand(s) binding.
|
| |
Biophys J,
97,
1756-1764.
|
 |
|
|
|
|
 |
M.Laursen,
M.Bublitz,
K.Moncoq,
C.Olesen,
J.V.Møller,
H.S.Young,
P.Nissen,
and
J.P.Morth
(2009).
Cyclopiazonic acid is complexed to a divalent metal ion when bound to the sarcoplasmic reticulum Ca2+-ATPase.
|
| |
J Biol Chem,
284,
13513-13518.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Stolz,
E.Lewitzki,
R.Bergbauer,
W.Mäntele,
E.Grell,
and
A.Barth
(2009).
Structural changes in the catalytic cycle of the Na+,K+-ATPase studied by infrared spectroscopy.
|
| |
Biophys J,
96,
3433-3442.
|
 |
|
|
|
|
 |
S.Danko,
T.Daiho,
K.Yamasaki,
X.Liu,
and
H.Suzuki
(2009).
Formation of the stable structural analog of ADP-sensitive phosphoenzyme of Ca2+-ATPase with occluded Ca2+ by beryllium fluoride: structural changes during phosphorylation and isomerization.
|
| |
J Biol Chem,
284,
22722-22735.
|
 |
|
|
|
|
 |
T.Shinoda,
H.Ogawa,
F.Cornelius,
and
C.Toyoshima
(2009).
Crystal structure of the sodium-potassium pump at 2.4 A resolution.
|
| |
Nature,
459,
446-450.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
X.Liu,
T.Daiho,
K.Yamasaki,
G.Wang,
S.Danko,
and
H.Suzuki
(2009).
Roles of interaction between actuator and nucleotide binding domains of sarco(endo)plasmic reticulum Ca(2+)-ATPase as revealed by single and swap mutational analyses of serine 186 and glutamate 439.
|
| |
J Biol Chem,
284,
25190-25198.
|
 |
|
|
|
|
 |
Y.Huang,
H.Li,
and
Y.Bu
(2009).
Molecular dynamics simulation exploration of cooperative migration mechanism of calcium ions in sarcoplasmic reticulum Ca2+-ATPase.
|
| |
J Comput Chem,
30,
2136-2145.
|
 |
|
|
|
|
 |
A.Takeuchi,
N.Reyes,
P.Artigas,
and
D.C.Gadsby
(2008).
The ion pathway through the opened Na(+),K(+)-ATPase pump.
|
| |
Nature,
456,
413-416.
|
 |
|
|
|
|
 |
C.C.Wu,
W.J.Rice,
and
D.L.Stokes
(2008).
Structure of a copper pump suggests a regulatory role for its metal-binding domain.
|
| |
Structure,
16,
976-985.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.A,
J.C,
and
A.H-J
(2008).
Properties of the SR Ca-ATPase in an Open Microsomal Membrane Preparation.
|
| |
Open Biochem J,
2,
91-99.
|
 |
|
|
|
|
 |
K.Yamasaki,
G.Wang,
T.Daiho,
S.Danko,
and
H.Suzuki
(2008).
Roles of Tyr122-hydrophobic cluster and K+ binding in Ca2+ -releasing process of ADP-insensitive phosphoenzyme of sarcoplasmic reticulum Ca2+ -ATPase.
|
| |
J Biol Chem,
283,
29144-29155.
|
 |
|
|
|
|
 |
M.Andersson,
J.Vincent,
D.van der Spoel,
J.Davidsson,
and
R.Neutze
(2008).
A proposed time-resolved X-ray scattering approach to track local and global conformational changes in membrane transport proteins.
|
| |
Structure,
16,
21-28.
|
 |
|
|
|
|
 |
M.Esmann,
N.U.Fedosova,
and
D.Marsh
(2008).
Osmotic stress and viscous retardation of the Na,K-ATPase ion pump.
|
| |
Biophys J,
94,
2767-2776.
|
 |
|
|
|
|
 |
M.Lape,
C.Elam,
M.Versluis,
R.Kempton,
and
S.Paula
(2008).
Molecular determinants of sarco/endoplasmic reticulum calcium ATPase inhibition by hydroquinone-based compounds.
|
| |
Proteins,
70,
639-649.
|
 |
|
|
|
|
 |
N.J.Traaseth,
K.N.Ha,
R.Verardi,
L.Shi,
J.J.Buffy,
L.R.Masterson,
and
G.Veglia
(2008).
Structural and dynamic basis of phospholamban and sarcolipin inhibition of Ca(2+)-ATPase.
|
| |
Biochemistry,
47,
3.
|
 |
|
|
|
|
 |
P.L.Jorgensen,
and
F.Amat
(2008).
Regulation and Function of Lysine-Substituted Na,K Pumps in Salt Adaptation of Artemia franciscana.
|
| |
J Membr Biol,
221,
39-49.
|
 |
|
|
|
|
 |
Z.Lu,
D.Dunaway-Mariano,
and
K.N.Allen
(2008).
The catalytic scaffold of the haloalkanoic acid dehalogenase enzyme superfamily acts as a mold for the trigonal bipyramidal transition state.
|
| |
Proc Natl Acad Sci U S A,
105,
5687-5692.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Fibich,
K.Janko,
and
H.J.Apell
(2007).
Kinetics of proton binding to the sarcoplasmic reticulum Ca-ATPase in the E1 state.
|
| |
Biophys J,
93,
3092-3104.
|
 |
|
|
|
|
 |
A.P.Einholm,
J.P.Andersen,
and
B.Vilsen
(2007).
Roles of transmembrane segment M1 of Na(+),K (+)-ATPase and Ca (2+)-ATPase, the gatekeeper and the pivot.
|
| |
J Bioenerg Biomembr,
39,
357-366.
|
 |
|
|
|
|
 |
B.P.Pedersen,
M.J.Buch-Pedersen,
J.P.Morth,
M.G.Palmgren,
and
P.Nissen
(2007).
Crystal structure of the plasma membrane proton pump.
|
| |
Nature,
450,
1111-1114.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Olesen,
M.Picard,
A.M.Winther,
C.Gyrup,
J.P.Morth,
C.Oxvig,
J.V.Møller,
and
P.Nissen
(2007).
The structural basis of calcium transport by the calcium pump.
|
| |
Nature,
450,
1036-1042.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Toyoshima,
Y.Norimatsu,
S.Iwasawa,
T.Tsuda,
and
H.Ogawa
(2007).
How processing of aspartylphosphate is coupled to lumenal gating of the ion pathway in the calcium pump.
|
| |
Proc Natl Acad Sci U S A,
104,
19831-19836.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.C.Gadsby
(2007).
Structural biology: ion pumps made crystal clear.
|
| |
Nature,
450,
957-959.
|
 |
|
|
|
|
 |
E.L.Karjalainen,
K.Hauser,
and
A.Barth
(2007).
Proton paths in the sarcoplasmic reticulum Ca(2+) -ATPase.
|
| |
Biochim Biophys Acta,
1767,
1310-1318.
|
 |
|
|
|
|
 |
F.Mancia,
and
W.A.Hendrickson
(2007).
Expression of recombinant G-protein coupled receptors for structural biology.
|
| |
Mol Biosyst,
3,
723-734.
|
 |
|
|
|
|
 |
G.Guerra,
V.V.Petrov,
K.E.Allen,
M.Miranda,
J.P.Pardo,
and
C.W.Slayman
(2007).
Role of transmembrane segment M8 in the biogenesis and function of yeast plasma-membrane H(+)-ATPase.
|
| |
Biochim Biophys Acta,
1768,
2383-2392.
|
 |
|
|
|
|
 |
J.M.Argüello,
E.Eren,
and
M.González-Guerrero
(2007).
The structure and function of heavy metal transport P1B-ATPases.
|
| |
Biometals,
20,
233-248.
|
 |
|
|
|
|
 |
J.P.Morth,
B.P.Pedersen,
M.S.Toustrup-Jensen,
T.L.Sørensen,
J.Petersen,
J.P.Andersen,
B.Vilsen,
and
P.Nissen
(2007).
Crystal structure of the sodium-potassium pump.
|
| |
Nature,
450,
1043-1049.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Hauser,
and
A.Barth
(2007).
Side-chain protonation and mobility in the sarcoplasmic reticulum Ca2+-ATPase: implications for proton countertransport and Ca2+ release.
|
| |
Biophys J,
93,
3259-3270.
|
 |
|
|
|
|
 |
K.Nagamune,
W.L.Beatty,
and
L.D.Sibley
(2007).
Artemisinin induces calcium-dependent protein secretion in the protozoan parasite Toxoplasma gondii.
|
| |
Eukaryot Cell,
6,
2147-2156.
|
 |
|
|
|
|
 |
M.Takahashi,
Y.Kondou,
and
C.Toyoshima
(2007).
Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors.
|
| |
Proc Natl Acad Sci U S A,
104,
5800-5805.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.F.Rakowski,
P.Artigas,
F.Palma,
M.Holmgren,
P.De Weer,
and
D.C.Gadsby
(2007).
Sodium flux ratio in Na/K pump-channels opened by palytoxin.
|
| |
J Gen Physiol,
130,
41-54.
|
 |
|
|
|
|
 |
S.P.Andrews,
M.M.Tait,
M.Ball,
and
S.V.Ley
(2007).
Design and total synthesis of unnatural analogues of the sub-nanomolar SERCA inhibitor thapsigargin.
|
| |
Org Biomol Chem,
5,
1427-1436.
|
 |
|
|
|
|
 |
X.Liang,
D.J.Campopiano,
and
P.J.Sadler
(2007).
Metals in membranes.
|
| |
Chem Soc Rev,
36,
968-992.
|
 |
|
|
|
|
 |
A.M.Jensen,
T.L.Sørensen,
C.Olesen,
J.V.Møller,
and
P.Nissen
(2006).
Modulatory and catalytic modes of ATP binding by the calcium pump.
|
| |
EMBO J,
25,
2305-2314.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.L.Stokes,
A.J.Pomfret,
W.J.Rice,
J.P.Glaves,
and
H.S.Young
(2006).
Interactions between Ca2+-ATPase and the pentameric form of phospholamban in two-dimensional co-crystals.
|
| |
Biophys J,
90,
4213-4223.
|
 |
|
|
|
|
 |
G.Inesi,
D.Lewis,
H.Ma,
A.Prasad,
and
C.Toyoshima
(2006).
Concerted conformational effects of Ca2+ and ATP are required for activation of sequential reactions in the Ca2+ ATPase (SERCA) catalytic cycle.
|
| |
Biochemistry,
45,
13769-13778.
|
 |
|
|
|
|
 |
G.von Heijne
(2006).
Membrane-protein topology.
|
| |
Nat Rev Mol Cell Biol,
7,
909-918.
|
 |
|
|
|
|
 |
J.Andersson,
and
A.Barth
(2006).
FTIR studies on the bond properties of the aspartyl phosphate moiety of the Ca2+ -ATPase.
|
| |
Biopolymers,
82,
353-357.
|
 |
|
|
|
|
 |
J.I.Jeong,
E.E.Lattman,
and
G.S.Chirikjian
(2006).
A method for finding candidate conformations for molecular replacement using relative rotation between domains of a known structure.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
398-409.
|
 |
|
|
|
|
 |
J.P.Morth,
T.L.Sørensen,
and
P.Nissen
(2006).
Membrane's Eleven: heavy-atom derivatives of membrane-protein crystals.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
877-882.
|
 |
|
|
|
|
 |
K.Hauser
(2006).
Electrostatic calculations for assignment of infrared difference bands to carboxyl groups getting protonated during protein reactions.
|
| |
Biopolymers,
82,
430-434.
|
 |
|
|
|
|
 |
K.R.Vanmolkot,
H.Stroink,
J.B.Koenderink,
E.E.Kors,
J.J.van den Heuvel,
E.H.van den Boogerd,
A.H.Stam,
J.Haan,
B.B.De Vries,
G.M.Terwindt,
R.R.Frants,
M.D.Ferrari,
and
A.M.van den Maagdenberg
(2006).
Severe episodic neurological deficits and permanent mental retardation in a child with a novel FHM2 ATP1A2 mutation.
|
| |
Ann Neurol,
59,
310-314.
|
 |
|
|
|
|
 |
M.Kubala
(2006).
ATP-binding to P-type ATPases as revealed by biochemical, spectroscopic, and crystallographic experiments.
|
| |
Proteins,
64,
1.
|
 |
|
|
|
|
 |
O.Capendeguy,
P.Chodanowski,
O.Michielin,
and
J.D.Horisberger
(2006).
Access of extracellular cations to their binding sites in Na,K-ATPase: role of the second extracellular loop of the alpha subunit.
|
| |
J Gen Physiol,
127,
341-352.
|
 |
|
|
|
|
 |
O.Dmitriev,
R.Tsivkovskii,
F.Abildgaard,
C.T.Morgan,
J.L.Markley,
and
S.Lutsenko
(2006).
Solution structure of the N-domain of Wilson disease protein: distinct nucleotide-binding environment and effects of disease mutations.
|
| |
Proc Natl Acad Sci U S A,
103,
5302-5307.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Purhonen,
K.Thomsen,
A.B.Maunsbach,
and
H.Hebert
(2006).
Association of renal Na,K-ATPase alpha-subunit with the beta- and gamma-subunits based on cryoelectron microscopy.
|
| |
J Membr Biol,
214,
139-146.
|
 |
|
|
|
|
 |
R.Grisshammer
(2006).
Understanding recombinant expression of membrane proteins.
|
| |
Curr Opin Biotechnol,
17,
337-340.
|
 |
|
|
|
|
 |
R.P.Clausen
(2006).
Organic chemistry at the interface to biology.
|
| |
Chembiochem,
7,
845-849.
|
 |
|
|
|
|
 |
T.L.Sorensen,
K.E.McAuley,
R.Flaig,
and
E.M.Duke
(2006).
New light for science: synchrotron radiation in structural medicine.
|
| |
Trends Biotechnol,
24,
500-508.
|
 |
|
|
|
|
 |
A.D.Gruia,
A.N.Bondar,
J.C.Smith,
and
S.Fischer
(2005).
Mechanism of a molecular valve in the halorhodopsin chloride pump.
|
| |
Structure,
13,
617-627.
|
 |
|
|
|
|
 |
A.P.Einholm,
M.Toustrup-Jensen,
J.P.Andersen,
and
B.Vilsen
(2005).
Mutation of Gly-94 in transmembrane segment M1 of Na+,K+-ATPase interferes with Na+ and K+ binding in E2P conformation.
|
| |
Proc Natl Acad Sci U S A,
102,
11254-11259.
|
 |
|
|
|
|
 |
C.Li,
O.Capendeguy,
K.Geering,
and
J.D.Horisberger
(2005).
A third Na+-binding site in the sodium pump.
|
| |
Proc Natl Acad Sci U S A,
102,
12706-12711.
|
 |
|
|
|
|
 |
C.Peinelt,
and
H.J.Apell
(2005).
Kinetics of Ca2+ binding to the SR Ca-ATPase in the E1 state.
|
| |
Biophys J,
89,
2427-2433.
|
 |
|
|
|
|
 |
G.Inesi,
S.Hua,
C.Xu,
H.Ma,
M.Seth,
A.M.Prasad,
and
C.Sumbilla
(2005).
Studies of Ca2+ ATPase (SERCA) inhibition.
|
| |
J Bioenerg Biomembr,
37,
365-368.
|
 |
|
|
|
|
 |
H.Homareda,
and
M.Ushimaru
(2005).
Stimulation of p-nitrophenylphosphatase activity of Na+/K+-ATPase by NaCl with oligomycin or ATP.
|
| |
FEBS J,
272,
673-684.
|
 |
|
|
|
|
 |
J.V.Møller,
C.Olesen,
A.M.Jensen,
and
P.Nissen
(2005).
The structural basis for coupling of Ca2+ transport to ATP hydrolysis by the sarcoplasmic reticulum Ca2+-ATPase.
|
| |
J Bioenerg Biomembr,
37,
359-364.
|
 |
|
|
|
|
 |
K.Obara,
N.Miyashita,
C.Xu,
I.Toyoshima,
Y.Sugita,
G.Inesi,
and
C.Toyoshima
(2005).
Structural role of countertransport revealed in Ca(2+) pump crystal structure in the absence of Ca(2+).
|
| |
Proc Natl Acad Sci U S A,
102,
14489-14496.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Jidenko,
R.C.Nielsen,
T.L.Sørensen,
J.V.Møller,
M.le Maire,
P.Nissen,
and
C.Jaxel
(2005).
Crystallization of a mammalian membrane protein overexpressed in Saccharomyces cerevisiae.
|
| |
Proc Natl Acad Sci U S A,
102,
11687-11691.
|
 |
|
|
|
|
 |
M.Liu,
E.L.Karjalainen,
and
A.Barth
(2005).
Use of helper enzymes for ADP removal in infrared spectroscopic experiments: application to Ca2+-ATPase.
|
| |
Biophys J,
88,
3615-3624.
|
 |
|
|
|
|
 |
M.Liu,
M.Krasteva,
and
A.Barth
(2005).
Interactions of phosphate groups of ATP and Aspartyl phosphate with the sarcoplasmic reticulum Ca2+-ATPase: an FTIR study.
|
| |
Biophys J,
89,
4352-4363.
|
 |
|
|
|
|
 |
O.Capendeguy,
and
J.D.Horisberger
(2005).
The role of the third extracellular loop of the Na+,K+-ATPase alpha subunit in a luminal gating mechanism.
|
| |
J Physiol,
565,
207-218.
|
 |
|
|
|
|
 |
C.R.Lancaster
(2004).
Structural biology: ion pump in the movies.
|
| |
Nature,
432,
286-287.
|
 |
|
|
|
|
 |
C.Toyoshima,
H.Nomura,
and
T.Tsuda
(2004).
Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues.
|
| |
Nature,
432,
361-368.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.T.Facciotti,
S.Rouhani-Manshadi,
and
R.M.Glaeser
(2004).
Energy transduction in transmembrane ion pumps.
|
| |
Trends Biochem Sci,
29,
445-451.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |