spacer
spacer

PDBsum entry 1lbc

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Membrane protein PDB id
1lbc

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
259 a.a. *
Ligands
GLU ×3
CYZ ×3
Metals
_ZN ×5
Waters ×319
* Residue conservation analysis
PDB id:
1lbc
Name: Membrane protein
Title: Crystal structure of glur2 ligand binding core (s1s2j-n775s) in complex with cyclothiazide (ctz) as well as glutamate at 1.8 a resolution
Structure: Glutamine receptor 2. Chain: a, b, c. Fragment: ligand binding core. Synonym: glur-2, glur-b, glur-k2, glutamate receptor ionotropic ampa 2. Engineered: yes. Mutation: yes
Source: Rattus norvegicus. Norway rat. Organism_taxid: 10116. Gene: glur-2. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Biol. unit: Dimer (from PQS)
Resolution:
1.80Å     R-factor:   0.222     R-free:   0.243
Authors: Y.Sun,R.Olson,M.Horning,N.Armstrong,M.Mayer,E.Gouaux
Key ref:
Y.Sun et al. (2002). Mechanism of glutamate receptor desensitization. Nature, 417, 245-253. PubMed id: 12015593 DOI: 10.1038/417245a
Date:
02-Apr-02     Release date:   29-May-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P19491  (GRIA2_RAT) -  Glutamate receptor 2 from Rattus norvegicus
Seq:
Struc:
 
Seq:
Struc:
883 a.a.
259 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 

 
DOI no: 10.1038/417245a Nature 417:245-253 (2002)
PubMed id: 12015593  
 
 
Mechanism of glutamate receptor desensitization.
Y.Sun, R.Olson, M.Horning, N.Armstrong, M.Mayer, E.Gouaux.
 
  ABSTRACT  
 
Ligand-gated ion channels transduce chemical signals into electrical impulses by opening a transmembrane pore in response to binding one or more neurotransmitter molecules. After activation, many ligand-gated ion channels enter a desensitized state in which the neurotransmitter remains bound but the ion channel is closed. Although receptor desensitization is crucial to the functioning of many ligand-gated ion channels in vivo, the molecular basis of this important process has until now defied analysis. Using the GluR2 AMPA-sensitive glutamate receptor, we show here that the ligand-binding cores form dimers and that stabilization of the intradimer interface by either mutations or allosteric modulators reduces desensitization. Perturbations that destabilize the interface enhance desensitization. Receptor activation involves conformational changes within each subunit that result in an increase in the separation of portions of the receptor that are linked to the ion channel. Our analysis defines the dimer interface in the resting and activated state, indicates how ligand binding is coupled to gating, and suggests modes of dimer dimer interaction in the assembled tetramer. Desensitization occurs through rearrangement of the dimer interface, which disengages the agonist-induced conformational change in the ligand-binding core from the ion channel gate.
 
  Selected figure(s)  
 
Figure 2.
Figure 2: The L483Y mutation and CTZ stabilize the GluR2 S1S2J dimer. a, Side view of the S1S2J -L483Y dimer in complex with AMPA. Subunit A is grey (domain 1) and blue (domain 2). Subunit B is pink (domain 1) and purple (domain 2). Residues from A are cyan; residues from B are yellow. Lys 505 and Ile 633 flank transmembrane segments 1 and 2, respectively. b, Top view of the L483Y dimer looking down the 2-fold axis. c, CTZ stabilizes the GluR2 S1S2J -N754S dimer by binding in the dimer interface. Side view of the S1S2J dimer in a complex with glutamate and CTZ. The two CTZ molecules are green and are shown in CPK representation. d, Top view of the S1S2J-Glu -CTZ dimer, looking down the 2-fold axis. e, Interactions between Tyr 483 from one subunit and Leu 748 and Lys 752 from another subunit. Similar interactions also occur in the dimer of S1S2J -L483Y in complex with DNQX. Note the intersubunit hydrogen bond between Asn 754 and the carbonyl oxygen of Ser 729. f, Interactions between CTZ and residues from subunits A (cyan) and B (yellow). The black dashed lines are hydrogen bonds and the light blue spheres are water molecules. Stereoviews of e and f are provided in Supplementary Information.
Figure 5.
Figure 5: Agonist-induced conformational changes in the dimer and gating model. a, Overlap of the S1S2J -L483Y dimers bound with either an agonist (AMPA, green) or an antagonist (DNQX, red). The relative movement of the linker region, which connects the ligand-binding core to the channel-forming segments, is represented by the difference in position of Ile 633 in the two structures. Distances between Ile 633 on two protomers are 28.3 Å in the DNQX structure and 36.3 Å in the AMPA structure. In addition, Ile 633 rotates around the 2-fold axis by 1.25° and moves 2.5 Å along the 2-fold axis, away from the membrane. b, A model for glutamate receptor activation and desensitization. Domain 1 and domain 2 of the ligand-binding core are labelled D1 and D2, respectively. Transmembrane segments of each subunit are indicated by a single green cylinder and the N-terminal domain (ATD) has not been included in the model. Each subunit binds a single agonist (A, red circle) and exists in three distinct conformations: closed (C), open (O) and desensitized (D). The closed and open states share the same S1S2 dimer interface. After the binding of agonist, closure of domain 2 towards domain 1 opens the channel gate, whereas closure of domain 1 towards domain 2 disrupts the dimer interface and desensitizes the receptor. The states are connected by using a simplified model for activation and desensitization, more complex versions of which quantitatively describe AMPA receptor responses10,25. A hypothetical plot of the free-energy change occurring during activation and desensitization is shown in the lower left panel for the wild-type (black line), L483Y (green line) and S754D (red line) species.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2002, 417, 245-253) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21521608 A.C.Jackson, and R.A.Nicoll (2011).
The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits.
  Neuron, 70, 178-199.  
20558186 G.M.Alushin, D.Jane, and M.L.Mayer (2011).
Binding site and ligand flexibility revealed by high resolution crystal structures of GluK1 competitive antagonists.
  Neuropharmacology, 60, 126-134.
PDB codes: 2qs1 2qs2 2qs4
20713069 J.Pøhlsgaard, K.Frydenvang, U.Madsen, and J.S.Kastrup (2011).
Lessons from more than 80 structures of the GluA2 ligand-binding domain in complex with agonists, antagonists and allosteric modulators.
  Neuropharmacology, 60, 135-150.  
21372852 M.L.Mayer (2011).
Glutamate receptor ion channels: where do all the calories go?
  Nat Struct Mol Biol, 18, 253-254.  
21349697 M.L.Mayer (2011).
Structure and mechanism of glutamate receptor ion channel assembly, activation and modulation.
  Curr Opin Neurobiol, 21, 283-290.  
21317873 M.Rossmann, M.Sukumaran, A.C.Penn, D.B.Veprintsev, M.M.Babu, and I.H.Greger (2011).
Subunit-selective N-terminal domain associations organize the formation of AMPA receptor heteromers.
  EMBO J, 30, 959-971.
PDB codes: 3hsy 3n6v 3o2j
  21395862 P.Paoletti (2011).
Molecular basis of NMDA receptor functional diversity.
  Eur J Neurosci, 33, 1351-1365.  
20199107 A.H.Ahmed, C.P.Ptak, and R.E.Oswald (2010).
Molecular mechanism of flop selectivity and subsite recognition for an AMPA receptor allosteric modulator: structures of GluA2 and GluA3 in complexes with PEPA.
  Biochemistry, 49, 2843-2850.
PDB codes: 3m3f 3m3k 3m3l
20163115 A.H.Ahmed, and R.E.Oswald (2010).
Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors.
  J Med Chem, 53, 2197-2203.
PDB codes: 3lsf 3lsl 3lsw 3lsx
20219255 A.S.Kato, M.B.Gill, H.Yu, E.S.Nisenbaum, and D.S.Bredt (2010).
TARPs differentially decorate AMPA receptors to specify neuropharmacology.
  Trends Neurosci, 33, 241-248.  
21172611 A.S.Kato, M.B.Gill, M.T.Ho, H.Yu, Y.Tu, E.R.Siuda, H.Wang, Y.W.Qian, E.S.Nisenbaum, S.Tomita, and D.S.Bredt (2010).
Hippocampal AMPA receptor gating controlled by both TARP and cornichon proteins.
  Neuron, 68, 1082-1096.  
20850188 D.Perrais, J.Veran, and C.Mulle (2010).
Gating and permeation of kainate receptors: differences unveiled.
  Trends Pharmacol Sci, 31, 516-522.  
20457909 J.Gonzalez, M.Du, K.Parameshwaran, V.Suppiramaniam, and V.Jayaraman (2010).
Role of dimer interface in activation and desensitization in AMPA receptors.
  Proc Natl Acad Sci U S A, 107, 9891-9896.  
21206529 J.Terhag, K.Gottschling, and M.Hollmann (2010).
The Transmembrane Domain C of AMPA Receptors is Critically Involved in Receptor Function and Modulation.
  Front Mol Neurosci, 3, 117.  
21048085 K.Hashimoto, and A.R.Panchenko (2010).
Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states.
  Proc Natl Acad Sci U S A, 107, 20352-20357.  
20089915 K.S.Kim, D.Yan, and S.Tomita (2010).
Assembly and stoichiometry of the AMPA receptor and transmembrane AMPA receptor regulatory protein complex.
  J Neurosci, 30, 1064-1072.  
20439731 L.A.Christie, T.A.Russell, J.Xu, L.Wood, G.M.Shepherd, and A.Contractor (2010).
AMPA receptor desensitization mutation results in severe developmental phenotypes and early postnatal lethality.
  Proc Natl Acad Sci U S A, 107, 9412-9417.  
20164357 N.F.Shanks, T.Maruo, A.N.Farina, M.H.Ellisman, and T.Nakagawa (2010).
Contribution of the global subunit structure and stargazin on the maturation of AMPA receptors.
  J Neurosci, 30, 2728-2740.  
20877838 R.Edwards, J.Madine, L.Fielding, and D.A.Middleton (2010).
Measurement of multiple torsional angles from one-dimensional solid-state NMR spectra: application to the conformational analysis of a ligand in its biological receptor site.
  Phys Chem Chem Phys, 12, 13999-14008.  
20423333 S.E.Ward, B.D.Bax, and M.Harries (2010).
Challenges for and current status of research into positive modulators of AMPA receptors.
  Br J Pharmacol, 160, 181-190.  
21080238 T.Nakagawa (2010).
The biochemistry, ultrastructure, and subunit assembly mechanism of AMPA receptors.
  Mol Neurobiol, 42, 161-184.  
20404149 U.Das, J.Kumar, M.L.Mayer, and A.J.Plested (2010).
Domain organization and function in GluK2 subtype kainate receptors.
  Proc Natl Acad Sci U S A, 107, 8463-8468.  
19284741 A.H.Ahmed, M.D.Thompson, M.K.Fenwick, B.Romero, A.P.Loh, D.E.Jane, H.Sondermann, and R.E.Oswald (2009).
Mechanisms of antagonism of the GluR2 AMPA receptor: structure and dynamics of the complex of two willardiine antagonists with the glutamate binding domain.
  Biochemistry, 48, 3894-3903.
PDB codes: 3h03 3h06
19003990 A.H.Ahmed, Q.Wang, H.Sondermann, and R.E.Oswald (2009).
Structure of the S1S2 glutamate binding domain of GLuR3.
  Proteins, 75, 628-637.
PDB codes: 3dln 3dp4 3dp6
19946266 A.I.Sobolevsky, M.P.Rosconi, and E.Gouaux (2009).
X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor.
  Nature, 462, 745-756.
PDB codes: 3kg2 3kgc
18687343 A.J.Plested, and M.L.Mayer (2009).
Engineering a high-affinity allosteric binding site for divalent cations in kainate receptors.
  Neuropharmacology, 56, 114-120.  
19776277 A.J.Plested, and M.L.Mayer (2009).
AMPA receptor ligand binding domain mobility revealed by functional cross linking.
  J Neurosci, 29, 11912-11923.  
19617541 C.Chaudhry, A.J.Plested, P.Schuck, and M.L.Mayer (2009).
Energetics of glutamate receptor ligand binding domain dimer assembly are modulated by allosteric ions.
  Proc Natl Acad Sci U S A, 106, 12329-12334.  
19339989 C.Chaudhry, M.C.Weston, P.Schuck, C.Rosenmund, and M.L.Mayer (2009).
Stability of ligand-binding domain dimer assembly controls kainate receptor desensitization.
  EMBO J, 28, 1518-1530.
PDB codes: 3g3f 3g3g 3g3h 3g3i 3g3j 3g3k
19648915 C.L.Kussius, and G.K.Popescu (2009).
Kinetic basis of partial agonism at NMDA receptors.
  Nat Neurosci, 12, 1114-1120.  
19673491 C.P.Ptak, A.H.Ahmed, and R.E.Oswald (2009).
Probing the allosteric modulator binding site of GluR2 with thiazide derivatives.
  Biochemistry, 48, 8594-8602.
PDB codes: 3ijo 3ijx 3ik6 3il1 3ilt 3ilu
19481459 C.S.Walker, S.Jensen, M.Ellison, J.A.Matta, W.Y.Lee, J.S.Imperial, N.Duclos, P.J.Brockie, D.M.Madsen, J.T.Isaac, B.Olivera, and A.V.Maricq (2009).
A novel Conus snail polypeptide causes excitotoxicity by blocking desensitization of AMPA receptors.
  Curr Biol, 19, 900-908.  
19773551 C.Sager, J.Terhag, S.Kott, and M.Hollmann (2009).
C-terminal domains of transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor regulatory proteins not only facilitate trafficking but are major modulators of AMPA receptor function.
  J Biol Chem, 284, 32413-32424.  
  19216737 D.Nguyen, P.Deng, E.A.Matthews, D.S.Kim, G.Feng, A.H.Dickenson, Z.C.Xu, and Z.D.Luo (2009).
Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calcium channel alpha-2-delta-1 protein-mediated spinal sensitization and behavioral hypersensitivity.
  Mol Pain, 5, 6.  
19793963 H.Yuan, K.B.Hansen, K.M.Vance, K.K.Ogden, and S.F.Traynelis (2009).
Control of NMDA receptor function by the NR2 subunit amino-terminal domain.
  J Neurosci, 29, 12045-12058.  
19265014 J.Schwenk, N.Harmel, G.Zolles, W.Bildl, A.Kulik, B.Heimrich, O.Chisaka, P.Jonas, U.Schulte, B.Fakler, and N.Klöcker (2009).
Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors.
  Science, 323, 1313-1319.  
19176800 K.B.Hansen, P.Naur, N.L.Kurtkaya, A.S.Kristensen, M.Gajhede, J.S.Kastrup, and S.F.Traynelis (2009).
Modulation of the dimer interface at ionotropic glutamate-like receptor delta2 by D-serine and extracellular calcium.
  J Neurosci, 29, 907-917.  
19717789 K.E.Montgomery, M.Kessler, and A.C.Arai (2009).
Modulation of agonist binding to AMPA receptors by 1-(1,4-benzodioxan-6-ylcarbonyl)piperidine (CX546): differential effects across brain regions and GluA1-4/transmembrane AMPA receptor regulatory protein combinations.
  J Pharmacol Exp Ther, 331, 965-974.  
19297335 K.Frydenvang, L.L.Lash, P.Naur, P.A.Postila, D.S.Pickering, C.M.Smith, M.Gajhede, M.Sasaki, R.Sakai, O.T.Pentikaïnen, G.T.Swanson, and J.S.Kastrup (2009).
Full Domain Closure of the Ligand-binding Core of the Ionotropic Glutamate Receptor iGluR5 Induced by the High Affinity Agonist Dysiherbaine and the Functional Antagonist 8,9-Dideoxyneodysiherbaine.
  J Biol Chem, 284, 14219-14229.
PDB codes: 3gba 3gbb
19544581 M.Du, A.Rambhadran, and V.Jayaraman (2009).
Vibrational spectroscopic investigation of the ligand binding domain of kainate receptors.
  Protein Sci, 18, 1585-1591.  
19404260 M.Gielen, B.Siegler Retchless, L.Mony, J.W.Johnson, and P.Paoletti (2009).
Mechanism of differential control of NMDA receptor activity by NR2 subunits.
  Nature, 459, 703-707.  
19561126 N.Nayeem, Y.Zhang, D.K.Schweppe, D.R.Madden, and T.Green (2009).
A nondesensitizing kainate receptor point mutant.
  Mol Pharmacol, 76, 534-542.  
19506248 S.M.Schmid, S.Kott, C.Sager, T.Huelsken, and M.Hollmann (2009).
The glutamate receptor subunit delta2 is capable of gating its intrinsic ion channel as revealed by ligand binding domain transplantation.
  Proc Natl Acad Sci U S A, 106, 10320-10325.  
19560629 T.P.Möykkynen, S.K.Coleman, K.Keinänen, D.M.Lovinger, and E.R.Korpi (2009).
Ethanol increases desensitization of recombinant GluR-D AMPA receptor and TARP combinations.
  Alcohol, 43, 277-284.  
19217376 W.Zhang, F.St-Gelais, C.P.Grabner, J.C.Trinidad, A.Sumioka, M.Morimoto-Tomita, K.S.Kim, C.Straub, A.L.Burlingame, J.R.Howe, and S.Tomita (2009).
A transmembrane accessory subunit that modulates kainate-type glutamate receptors.
  Neuron, 61, 385-396.  
18923416 A.C.Penn, S.R.Williams, and I.H.Greger (2008).
Gating motions underlie AMPA receptor secretion from the endoplasmic reticulum.
  EMBO J, 27, 3056-3068.  
18514334 A.D.Milstein, and R.A.Nicoll (2008).
Regulation of AMPA receptor gating and pharmacology by TARP auxiliary subunits.
  Trends Pharmacol Sci, 29, 333-339.  
19102704 A.Gill, A.Birdsey-Benson, B.L.Jones, L.P.Henderson, and D.R.Madden (2008).
Correlating AMPA receptor activation and cleft closure across subunits: crystal structures of the GluR4 ligand-binding domain in complex with full and partial agonists.
  Biochemistry, 47, 13831-13841.
PDB codes: 3en3 3epe
18795801 A.S.Maltsev, A.H.Ahmed, M.K.Fenwick, D.E.Jane, and R.E.Oswald (2008).
Mechanism of partial agonism at the GluR2 AMPA receptor: Measurements of lobe orientation in solution.
  Biochemistry, 47, 10600-10610.  
18974824 D.M.Santucci, and S.Raghavachari (2008).
The effects of NR2 subunit-dependent NMDA receptor kinetics on synaptic transmission and CaMKII activation.
  PLoS Comput Biol, 4, e1000208.  
18759455 J.Gonzalez, A.Rambhadran, M.Du, and V.Jayaraman (2008).
LRET investigations of conformational changes in the ligand binding domain of a functional AMPA receptor.
  Biochemistry, 47, 10027-10032.  
18754610 L.A.Cruz, E.Estébanez-Perpiñá, S.Pfaff, S.Borngraeber, N.Bao, J.Blethrow, R.J.Fletterick, and P.M.England (2008).
6-Azido-7-nitro-1,4-dihydroquinoxaline-2,3-dione (ANQX) forms an irreversible bond to the active site of the GluR2 AMPA receptor.
  J Med Chem, 51, 5856-5860.
PDB code: 3bki
18658129 M.Du, A.Rambhadran, and V.Jayaraman (2008).
Luminescence resonance energy transfer investigation of conformational changes in the ligand binding domain of a kainate receptor.
  J Biol Chem, 283, 27074-27078.  
18184566 M.Gielen, A.Le Goff, D.Stroebel, J.W.Johnson, J.Neyton, and P.Paoletti (2008).
Structural rearrangements of NR1/NR2A NMDA receptors during allosteric inhibition.
  Neuron, 57, 80-93.  
18387631 M.K.Fenwick, and R.E.Oswald (2008).
NMR spectroscopy of the ligand-binding core of ionotropic glutamate receptor 2 bound to 5-substituted willardiine partial agonists.
  J Mol Biol, 378, 673-685.  
18636091 Y.Yao, C.B.Harrison, P.L.Freddolino, K.Schulten, and M.L.Mayer (2008).
Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors.
  EMBO J, 27, 2158-2170.
PDB codes: 2rc7 2rc8 2rc9 2rca 2rcb
17337449 A.H.Ahmed, A.P.Loh, D.E.Jane, and R.E.Oswald (2007).
Dynamics of the S1S2 glutamate binding domain of GluR2 measured using 19F NMR spectroscopy.
  J Biol Chem, 282, 12773-12784.  
17359918 A.J.Plested, and M.L.Mayer (2007).
Structure and mechanism of kainate receptor modulation by anions.
  Neuron, 53, 829-841.
PDB code: 2ojt
17937910 A.Y.Lau, and B.Roux (2007).
The free energy landscapes governing conformational changes in a glutamate receptor ligand-binding domain.
  Structure, 15, 1203-1214.  
18022568 B.H.Kaae, K.Harpsøe, J.S.Kastrup, A.C.Sanz, D.S.Pickering, B.Metzler, R.P.Clausen, M.Gajhede, P.Sauerberg, T.Liljefors, and U.Madsen (2007).
Structural proof of a dimeric positive modulator bridging two identical AMPA receptor-binding sites.
  Chem Biol, 14, 1294-1303.
PDB code: 3bbr
17483093 C.Körber, M.Werner, J.Hoffmann, C.Sager, M.Tietze, S.M.Schmid, S.Kott, and M.Hollmann (2007).
Stargazin interaction with alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors is critically dependent on the amino acid at the narrow constriction of the ion channel.
  J Biol Chem, 282, 18758-18766.  
16892196 D.Catarzi, V.Colotta, and F.Varano (2007).
Competitive AMPA receptor antagonists.
  Med Res Rev, 27, 239-278.  
17521566 D.L.Minor (2007).
The neurobiologist's guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data.
  Neuron, 54, 511-533.  
17581823 H.Hald, P.Naur, D.S.Pickering, D.Sprogøe, U.Madsen, D.B.Timmermann, P.K.Ahring, T.Liljefors, A.Schousboe, J.Egebjerg, M.Gajhede, and J.S.Kastrup (2007).
Partial agonism and antagonism of the ionotropic glutamate receptor iGLuR5: structures of the ligand-binding core in complex with domoic acid and 2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid.
  J Biol Chem, 282, 25726-25736.
PDB codes: 1vso 2pbw
17629578 I.H.Greger, E.B.Ziff, and A.C.Penn (2007).
Molecular determinants of AMPA receptor subunit assembly.
  Trends Neurosci, 30, 407-416.  
17637801 J.E.Lisman, S.Raghavachari, and R.W.Tsien (2007).
The sequence of events that underlie quantal transmission at central glutamatergic synapses.
  Nat Rev Neurosci, 8, 597-609.  
17934637 K.A.Mankiewicz, and V.Jayaraman (2007).
Glutamate receptors as seen by light: spectroscopic studies of structure-function relationships.
  Braz J Med Biol Res, 40, 1419-1427.  
  18345351 M.D.Boehler, B.C.Wheeler, and G.J.Brewer (2007).
Added astroglia promote greater synapse density and higher activity in neuronal networks.
  Neuron Glia Biol, 3, 127-140.  
17138605 M.Postlethwaite, M.H.Hennig, J.R.Steinert, B.P.Graham, and I.D.Forsythe (2007).
Acceleration of AMPA receptor kinetics underlies temperature-dependent changes in synaptic strength at the rat calyx of Held.
  J Physiol, 579, 69-84.  
17208968 N.A.Mitchell, and M.W.Fleck (2007).
Targeting AMPA receptor gating processes with allosteric modulators and mutations.
  Biophys J, 92, 2392-2402.  
17334406 S.Chakrapani, and E.Perozo (2007).
How to gate an ion channel: lessons from MthK.
  Nat Struct Mol Biol, 14, 180-182.  
17544687 S.S.Mahajan, and E.B.Ziff (2007).
Novel toxicity of the unedited GluR2 AMPA receptor subunit dependent on surface trafficking and increased Ca2+-permeability.
  Mol Cell Neurosci, 35, 470-481.  
18000041 S.Tomita, R.K.Byrd, N.Rouach, C.Bellone, A.Venegas, J.L.O'Brien, K.S.Kim, O.Olsen, R.A.Nicoll, and D.S.Bredt (2007).
AMPA receptors and stargazin-like transmembrane AMPA receptor-regulatory proteins mediate hippocampal kainate neurotoxicity.
  Proc Natl Acad Sci U S A, 104, 18784-18788.  
17545169 W.Pei, M.Ritz, M.McCarthy, Z.Huang, and L.Niu (2007).
Receptor occupancy and channel-opening kinetics: a study of GLUR1 L497Y AMPA receptor.
  J Biol Chem, 282, 22731-22736.  
17534481 X.Liang, D.J.Campopiano, and P.J.Sadler (2007).
Metals in membranes.
  Chem Soc Rev, 36, 968-992.  
17178406 A.Priel, S.Selak, J.Lerma, and Y.Stern-Bach (2006).
Block of kainate receptor desensitization uncovers a key trafficking checkpoint.
  Neuron, 52, 1037-1046.  
16644124 C.Prescott, A.M.Weeks, K.J.Staley, and K.M.Partin (2006).
Kynurenic acid has a dual action on AMPA receptor responses.
  Neurosci Lett, 402, 108-112.  
16818875 C.S.Walker, M.M.Francis, P.J.Brockie, D.M.Madsen, Y.Zheng, and A.V.Maricq (2006).
Conserved SOL-1 proteins regulate ionotropic glutamate receptor desensitization.
  Proc Natl Acad Sci U S A, 103, 10787-10792.  
16818877 C.S.Walker, P.J.Brockie, D.M.Madsen, M.M.Francis, Y.Zheng, S.Koduri, J.E.Mellem, N.Strutz-Seebohm, and A.V.Maricq (2006).
Reconstitution of invertebrate glutamate receptor function depends on stargazin-like proteins.
  Proc Natl Acad Sci U S A, 103, 10781-10786.  
16890999 G.Lynch, and C.M.Gall (2006).
Ampakines and the threefold path to cognitive enhancement.
  Trends Neurosci, 29, 554-562.  
17067296 H.Mizutani, T.Hori, and T.Takahashi (2006).
5-HT1B receptor-mediated presynaptic inhibition at the calyx of Held of immature rats.
  Eur J Neurosci, 24, 1946-1954.  
16815334 I.H.Greger, P.Akamine, L.Khatri, and E.B.Ziff (2006).
Developmentally regulated, combinatorial RNA processing modulates AMPA receptor biogenesis.
  Neuron, 51, 85-97.
PDB code: 2uxa
  16801385 J.T.Sack, and R.W.Aldrich (2006).
Binding of a gating modifier toxin induces intersubunit cooperativity early in the Shaker K channel's activation pathway.
  J Gen Physiol, 128, 119-132.  
17115050 M.C.Weston, P.Schuck, A.Ghosal, C.Rosenmund, and M.L.Mayer (2006).
Conformational restriction blocks glutamate receptor desensitization.
  Nat Struct Mol Biol, 13, 1120-1127.
PDB codes: 2i0b 2i0c
16554805 M.L.Mayer (2006).
Glutamate receptors at atomic resolution.
  Nature, 440, 456-462.  
16474411 P.E.Chen, and D.J.Wyllie (2006).
Pharmacological insights obtained from structure-function studies of ionotropic glutamate receptors.
  Br J Pharmacol, 147, 839-853.  
16473938 S.Fucile, R.Miledi, and F.Eusebi (2006).
Effects of cyclothiazide on GluR1/AMPA receptors.
  Proc Natl Acad Sci U S A, 103, 2943-2947.  
16785437 S.Tomita, M.Sekiguchi, K.Wada, R.A.Nicoll, and D.S.Bredt (2006).
Stargazin controls the pharmacology of AMPA receptor potentiators.
  Proc Natl Acad Sci U S A, 103, 10064-10067.  
16497150 T.Nakagawa, Y.Cheng, M.Sheng, and T.Walz (2006).
Three-dimensional structure of an AMPA receptor without associated stargazin/TARP proteins.
  Biol Chem, 387, 179-187.  
16731549 W.Zhang, A.Robert, S.B.Vogensen, and J.R.Howe (2006).
The relationship between agonist potency and AMPA receptor kinetics.
  Biophys J, 91, 1336-1346.  
16418277 Y.Zheng, P.J.Brockie, J.E.Mellem, D.M.Madsen, C.S.Walker, M.M.Francis, and A.V.Maricq (2006).
SOL-1 is an auxiliary subunit that modulates the gating of GLR-1 glutamate receptors in Caenorhabditis elegans.
  Proc Natl Acad Sci U S A, 103, 1100-1105.  
15996549 A.Inanobe, H.Furukawa, and E.Gouaux (2005).
Mechanism of partial agonist action at the NR1 subunit of NMDA receptors.
  Neuron, 47, 71-84.
PDB codes: 1y1m 1y1z 1y20
15794751 B.B.Nielsen, D.S.Pickering, J.R.Greenwood, L.Brehm, M.Gajhede, A.Schousboe, and J.S.Kastrup (2005).
Exploring the GluR2 ligand-binding core in complex with the bicyclical AMPA analogue (S)-4-AHCP.
  FEBS J, 272, 1639-1648.
PDB code: 1wvj
15848804 C.J.Hatton, and P.Paoletti (2005).
Modulation of triheteromeric NMDA receptors by N-terminal domain ligands.
  Neuron, 46, 261-274.  
15788777 D.E.Featherstone, E.Rushton, J.Rohrbough, F.Liebl, J.Karr, Q.Sheng, C.K.Rodesch, and K.Broadie (2005).
An essential Drosophila glutamate receptor subunit that functions in both central neuropil and neuromuscular junction.
  J Neurosci, 25, 3199-3208.  
15635696 F.Schlesinger, D.Tammena, K.Krampfl, and J.Bufler (2005).
Desensitization and resensitization are independently regulated in human recombinant GluR subunit coassemblies.
  Synapse, 55, 176-182.  
15703162 G.Ayalon, E.Segev, S.Elgavish, and Y.Stern-Bach (2005).
Two regions in the N-terminal domain of ionotropic glutamate receptor 3 form the subunit oligomerization interfaces that control subtype-specific receptor assembly.
  J Biol Chem, 280, 15053-15060.  
16281028 H.Furukawa, S.K.Singh, R.Mancusso, and E.Gouaux (2005).
Subunit arrangement and function in NMDA receptors.
  Nature, 438, 185-192.
PDB codes: 2a5s 2a5t 2ipv
16239269 H.Huang, S.C.Lee, and X.L.Yang (2005).
Modulation by melatonin of glutamatergic synaptic transmission in the carp retina.
  J Physiol, 569, 857-871.  
15731895 J.N.Kew, and J.A.Kemp (2005).
Ionotropic and metabotropic glutamate receptor structure and pharmacology.
  Psychopharmacology (Berl), 179, 4.  
15638945 K.Chen, and D.E.Featherstone (2005).
Discs-large (DLG) is clustered by presynaptic innervation and regulates postsynaptic glutamate receptor subunit composition in Drosophila.
  BMC Biol, 3, 1.  
16041746 K.Strømgaard (2005).
Natural products as tools for studies of ligand-gated ion channels.
  Chem Rec, 5, 229-239.  
15583001 L.Valluru, J.Xu, Y.Zhu, S.Yan, A.Contractor, and G.T.Swanson (2005).
Ligand binding is a critical requirement for plasma membrane expression of heteromeric kainate receptors.
  J Biol Chem, 280, 6085-6093.  
15632199 M.Du, S.A.Reid, and V.Jayaraman (2005).
Conformational changes in the ligand-binding domain of a functional ionotropic glutamate receptor.
  J Biol Chem, 280, 8633-8636.  
15677325 M.H.Nanao, T.Green, Y.Stern-Bach, S.F.Heinemann, and S.Choe (2005).
Structure of the kainate receptor subunit GluR6 agonist-binding domain complexed with domoic acid.
  Proc Natl Acad Sci U S A, 102, 1708-1713.
PDB code: 1yae
15744319 M.L.Mayer (2005).
Some assembly required.
  Nat Struct Mol Biol, 12, 208-209.  
15721240 M.L.Mayer (2005).
Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity.
  Neuron, 45, 539-552.
PDB codes: 1s50 1s7y 1s9t 1sd3 1tt1 1txf
15919192 M.L.Mayer (2005).
Glutamate receptor ion channels.
  Curr Opin Neurobiol, 15, 282-288.  
16099829 M.M.Holm, M.L.Lunn, S.F.Traynelis, J.S.Kastrup, and J.Egebjerg (2005).
Structural determinants of agonist-specific kinetics at the ionotropic glutamate receptor 2.
  Proc Natl Acad Sci U S A, 102, 12053-12058.  
16103115 M.M.Holm, P.Naur, B.Vestergaard, M.T.Geballe, M.Gajhede, J.S.Kastrup, S.F.Traynelis, and J.Egebjerg (2005).
A binding site tyrosine shapes desensitization kinetics and agonist potency at GluR2. A mutagenic, kinetic, and crystallographic study.
  J Biol Chem, 280, 35469-35476.
PDB code: 2anj
16408071 Q.Cheng, M.Du, G.Ramanoudjame, and V.Jayaraman (2005).
Evolution of glutamate interactions during binding to a glutamate receptor.
  Nat Chem Biol, 1, 329-332.  
15749783 S.Haider, A.Grottesi, B.A.Hall, F.M.Ashcroft, and M.S.Sansom (2005).
Conformational dynamics of the ligand-binding domain of inward rectifier K channels as revealed by molecular dynamics simulations: toward an understanding of Kir channel gating.
  Biophys J, 88, 3310-3320.  
15781472 S.Matsuda, Y.Kamiya, and M.Yuzaki (2005).
Roles of the N-terminal domain on the function and quaternary structure of the ionotropic glutamate receptor.
  J Biol Chem, 280, 20021-20029.  
15690046 T.Nakagawa, Y.Cheng, E.Ramm, M.Sheng, and T.Walz (2005).
Structure and different conformational states of native AMPA receptor complexes.
  Nature, 433, 545-549.  
16242408 V.Balannik, F.S.Menniti, A.V.Paternain, J.Lerma, and Y.Stern-Bach (2005).
Molecular mechanism of AMPA receptor noncompetitive antagonism.
  Neuron, 48, 279-288.  
14766176 A.I.Sobolevsky, M.V.Yelshansky, and L.P.Wollmuth (2004).
The outer pore of the glutamate receptor channel has 2-fold rotational symmetry.
  Neuron, 41, 367-378.  
14698601 A.J.Gibb (2004).
NMDA receptor subunit gating--uncovered.
  Trends Neurosci, 27, 7.  
14739810 A.J.Plested, S.S.Wildman, W.R.Lieb, and N.P.Franks (2004).
Determinants of the sensitivity of AMPA receptors to xenon.
  Anesthesiology, 100, 347-358.  
15263893 D.M.Blitz, K.A.Foster, and W.G.Regehr (2004).
Short-term synaptic plasticity: a comparison of two synapses.
  Nat Rev Neurosci, 5, 630-640.  
14610080 G.Li, and L.Niu (2004).
How fast does the GluR1Qflip channel open?
  J Biol Chem, 279, 3990-3997.  
15550244 G.M.Clayton, W.R.Silverman, L.Heginbotham, and J.H.Morais-Cabral (2004).
Structural basis of ligand activation in a cyclic nucleotide regulated potassium channel.
  Cell, 119, 615-627.
PDB codes: 1u12 1vp6
15388932 H.Takahashi, E.Inagaki, C.Kuroishi, and T.H.Tahirov (2004).
Structure of the Thermus thermophilus putative periplasmic glutamate/glutamine-binding protein.
  Acta Crystallogr D Biol Crystallogr, 60, 1846-1854.
PDB codes: 1us4 1us5
15714943 I.G.Tikhonova, M.I.Lavrov, V.A.Palyulin, and N.S.Zefirov (2004).
The binding site for allosteric modulators of AMPA receptor.
  Dokl Biochem Biophys, 399, 351-353.  
15071093 J.R.Brorson, D.Li, and T.Suzuki (2004).
Selective expression of heteromeric AMPA receptors driven by flip-flop differences.
  J Neurosci, 24, 3461-3470.  
14742424 K.Prybylowski, and R.J.Wenthold (2004).
N-Methyl-D-aspartate receptors: subunit assembly and trafficking to the synapse.
  J Biol Chem, 279, 9673-9676.  
15003173 K.S.Shin, C.Maertens, C.Proenza, B.S.Rothberg, and G.Yellen (2004).
Inactivation in HCN channels results from reclosure of the activation gate: desensitization to voltage.
  Neuron, 41, 737-744.  
15224382 K.Strømgaard, and I.Mellor (2004).
AMPA receptor ligands: synthetic and pharmacological studies of polyamines and polyamine toxins.
  Med Res Rev, 24, 589-620.  
15572113 L.Zhou, N.B.Olivier, H.Yao, E.C.Young, and S.A.Siegelbaum (2004).
A conserved tripeptide in CNG and HCN channels regulates ligand gating by controlling C-terminal oligomerization.
  Neuron, 44, 823-834.  
15150412 M.K.Jang, D.F.Mierke, S.J.Russek, and D.H.Farb (2004).
A steroid modulatory domain on NR2B controls N-methyl-D-aspartate receptor proton sensitivity.
  Proc Natl Acad Sci U S A, 101, 8198-8203.  
15307149 M.K.Klose, G.Armstrong, and R.M.Robertson (2004).
A role for the cytoskeleton in heat-shock-mediated thermoprotection of locust neuromuscular junctions.
  J Neurobiol, 60, 453-462.  
15229875 M.Kubo, and E.Ito (2004).
Structural dynamics of an ionotropic glutamate receptor.
  Proteins, 56, 411-419.  
14696185 M.Kubo, E.Shiomitsu, K.Odai, T.Sugimoto, H.Suzuki, and E.Ito (2004).
Picosecond dynamics of the glutamate receptor in response to agonist-induced vibrational excitation.
  Proteins, 54, 231-236.  
14977400 M.L.Mayer, and N.Armstrong (2004).
Structure and function of glutamate receptor ion channels.
  Annu Rev Physiol, 66, 161-181.  
14732708 M.Papadakis, L.M.Hawkins, and F.A.Stephenson (2004).
Appropriate NR1-NR1 disulfide-linked homodimer formation is requisite for efficient expression of functional, cell surface N-methyl-D-aspartate NR1/NR2 receptors.
  J Biol Chem, 279, 14703-14712.  
14766177 M.S.Horning, and M.L.Mayer (2004).
Regulation of AMPA receptor gating by ligand binding core dimers.
  Neuron, 41, 379-388.  
15240490 P.L.Sorgen, H.S.Duffy, D.C.Spray, and M.Delmar (2004).
pH-dependent dimerization of the carboxyl terminal domain of Cx43.
  Biophys J, 87, 574-581.  
15100219 Q.Cheng, and V.Jayaraman (2004).
Chemistry and conformation of the ligand-binding domain of GluR2 subtype of glutamate receptors.
  J Biol Chem, 279, 26346-26350.  
15142593 S.Prasad, X.Zhang, M.Yang, C.S.Ozkan, and M.Ozkan (2004).
Neurons as sensors: individual and cascaded chemical sensing.
  Biosens Bioelectron, 19, 1599-1610.  
16204817 T.M.Suchyna, S.R.Besch, and F.Sachs (2004).
Dynamic regulation of mechanosensitive channels: capacitance used to monitor patch tension in real time.
  Phys Biol, 1, 1.  
15139014 Y.Hagino, Y.Kariura, Y.Manago, T.Amano, B.Wang, M.Sekiguchi, K.Nishikawa, S.Aoki, K.Wada, and M.Noda (2004).
Heterogeneity and potentiation of AMPA type of glutamate receptors in rat cultured microglia.
  Glia, 47, 68-77.  
12603841 A.Pasternack, S.K.Coleman, J.Féthière, D.R.Madden, J.P.LeCaer, J.Rossier, M.Pasternack, and K.Keinänen (2003).
Characterization of the functional role of the N-glycans in the AMPA receptor ligand-binding domain.
  J Neurochem, 84, 1184-1192.  
12614348 B.Malissen (2003).
An evolutionary and structural perspective on T cell antigen receptor function.
  Immunol Rev, 191, 7.  
14659094 C.Ulens, and S.A.Siegelbaum (2003).
Regulation of hyperpolarization-activated HCN channels by cAMP through a gating switch in binding domain symmetry.
  Neuron, 40, 959-970.  
12657650 D.Deming, Q.Cheng, and V.Jayaraman (2003).
Is the isolated ligand binding domain a good model of the domain in the native receptor?
  J Biol Chem, 278, 17589-17592.  
12609874 G.Hapfelmeier, C.Tredt, R.Haseneder, W.Zieglgänsberger, B.Eisensamer, R.Rupprecht, and G.Rammes (2003).
Co-expression of the 5-HT3B serotonin receptor subunit alters the biophysics of the 5-HT3 receptor.
  Biophys J, 84, 1720-1733.  
14567697 G.Li, W.Pei, and L.Niu (2003).
Channel-opening kinetics of GluR2Q(flip) AMPA receptor: a laser-pulse photolysis study.
  Biochemistry, 42, 12358-12366.  
12805203 H.Furukawa, and E.Gouaux (2003).
Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core.
  EMBO J, 22, 2873-2885.
PDB codes: 1pb7 1pb8 1pb9 1pbq
12414797 H.Ren, Y.Honse, B.J.Karp, R.H.Lipsky, and R.W.Peoples (2003).
A site in the fourth membrane-associated domain of the N-methyl-D-aspartate receptor regulates desensitization and ion channel gating.
  J Biol Chem, 278, 276-283.  
14622580 I.H.Greger, L.Khatri, X.Kong, and E.B.Ziff (2003).
AMPA receptor tetramerization is mediated by Q/R editing.
  Neuron, 40, 763-774.  
12524445 M.L.He, H.Zemkova, and S.S.Stojilkovic (2003).
Dependence of purinergic P2X receptor activity on ectodomain structure.
  J Biol Chem, 278, 10182-10188.  
12730367 N.Armstrong, M.Mayer, and E.Gouaux (2003).
Tuning activation of the AMPA-sensitive GluR2 ion channel by genetic adjustment of agonist-induced conformational changes.
  Proc Natl Acad Sci U S A, 100, 5736-5741.
PDB codes: 1p1n 1p1o 1p1q 1p1u 1p1w
12649487 R.Dutzler, E.B.Campbell, and R.MacKinnon (2003).
Gating the selectivity filter in ClC chloride channels.
  Science, 300, 108-112.
PDB codes: 1ots 1ott 1otu
12805206 S.Trapp, S.Haider, P.Jones, M.S.Sansom, and F.M.Ashcroft (2003).
Identification of residues contributing to the ATP binding site of Kir6.2.
  EMBO J, 22, 2903-2912.  
12520509 T.N.Johansen, J.R.Greenwood, K.Frydenvang, U.Madsen, and P.Krogsgaard-Larsen (2003).
Stereostructure-activity studies on agonists at the AMPA and kainate subtypes of ionotropic glutamate receptors.
  Chirality, 15, 167-179.  
14639006 T.Suzuki, K.Tsuzuki, K.Kameyama, and S.Kwak (2003).
Recent advances in the study of AMPA receptors.
  Nippon Yakurigaku Zasshi, 122, 515-526.  
12511575 Y.Cho, V.Sharma, and J.C.Sacchettini (2003).
Crystal structure of ATP phosphoribosyltransferase from Mycobacterium tuberculosis.
  J Biol Chem, 278, 8333-8339.
PDB codes: 1nh7 1nh8
  12885877 Y.W.Lin, T.Jia, A.M.Weinsoft, and S.L.Shyng (2003).
Stabilization of the activity of ATP-sensitive potassium channels by ion pairs formed between adjacent Kir6.2 subunits.
  J Gen Physiol, 122, 225-237.  
12413796 A.A.Jensen, J.R.Greenwood, and H.Bräuner-Osborne (2002).
The dance of the clams: twists and turns in the family C GPCR homodimer.
  Trends Pharmacol Sci, 23, 491-493.  
12393905 A.Pasternack, S.K.Coleman, A.Jouppila, D.G.Mottershead, M.Lindfors, M.Pasternack, and K.Keinänen (2002).
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor channels lacking the N-terminal domain.
  J Biol Chem, 277, 49662-49667.  
12214225 G.Yellen (2002).
The voltage-gated potassium channels and their relatives.
  Nature, 419, 35-42.  
12370171 N.Strutz, C.Villmann, H.G.Breitinger, M.Werner, R.J.Wenthold, P.Kizelsztein, V.I.Teichberg, and M.Hollmann (2002).
Kainate-binding proteins are rendered functional ion channels upon transplantation of two short pore-flanking domains from a kainate receptor.
  J Biol Chem, 277, 48035-48042.  
12372271 P.C.Biggin (2002).
Glutamate receptors: desensitizing dimers.
  Curr Biol, 12, R631-R632.  
12183209 S.A.Lipton, Y.B.Choi, H.Takahashi, D.Zhang, W.Li, A.Godzik, and L.A.Bankston (2002).
Cysteine regulation of protein function--as exemplified by NMDA-receptor modulation.
  Trends Neurosci, 25, 474-480.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer