|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
320 a.a.
|
 |
|
|
|
|
|
|
|
175 a.a.
|
 |
|
|
|
|
|
|
|
213 a.a.
|
 |
|
|
|
|
|
|
|
221 a.a.
|
 |
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Viral protein/immune system
|
 |
|
Title:
|
 |
Influenza virus hemagglutinin complexed with an antibody that prevents the hemagglutinin low ph fusogenic transition
|
|
Structure:
|
 |
Hemagglutinin ha1. Chain: a, c, e. Hemagglutinin ha2. Chain: b, d, f. Fragment: fab fragment of antibody. Other_details: bromelain digested. Influenza virus infectivity neutralizing antibody (light chain). Chain: l, u.
|
|
Source:
|
 |
Influenza a virus (a/x-31(h3n2)). Organism_taxid: 132504. Strain: x31. Mus musculus. House mouse. Organism_taxid: 10090. Organism_taxid: 10090
|
|
Biol. unit:
|
 |
Decamer (from
)
|
|
Resolution:
|
 |
|
3.50Å
|
R-factor:
|
0.255
|
R-free:
|
0.323
|
|
|
Authors:
|
 |
C.Barbey-Martin,B.Gigant,T.Bizebard,L.J.Calder,S.A.Wharto,J.J.Skehel, M.Knossow
|
|
Key ref:
|
 |
C.Barbey-Martin
et al.
(2002).
An antibody that prevents the hemagglutinin low pH fusogenic transition.
Virology,
294,
70-74.
PubMed id:
|
 |
|
Date:
|
 |
|
16-Nov-01
|
Release date:
|
24-Apr-02
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P03438
(HEMA_I000X) -
Hemagglutinin from Influenza A virus (strain A/X-31 H3N2)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
566 a.a.
320 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P03437
(HEMA_I68A0) -
Hemagglutinin from Influenza A virus (strain A/Aichi/2/1968 H3N2)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
566 a.a.
175 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Virology
294:70-74
(2002)
|
|
PubMed id:
|
|
|
|
|
| |
|
An antibody that prevents the hemagglutinin low pH fusogenic transition.
|
|
C.Barbey-Martin,
B.Gigant,
T.Bizebard,
L.J.Calder,
S.A.Wharton,
J.J.Skehel,
M.Knossow.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
We have determined the structure of a complex of influenza hemagglutinin (HA)
with an antibody that binds simultaneously to the membrane-distal domains of two
HA monomers, effectively cross-linking them. The antibody prevents the low pH
structural transition of HA that is required for its membrane fusion activity,
providing evidence that a rearrangement of HA membrane-distal domains is an
essential component of the transition.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
D.C.Ekiert,
A.K.Kashyap,
J.Steel,
A.Rubrum,
G.Bhabha,
R.Khayat,
J.H.Lee,
M.A.Dillon,
R.E.O'Neil,
A.M.Faynboym,
M.Horowitz,
L.Horowitz,
A.B.Ward,
P.Palese,
R.Webby,
R.A.Lerner,
R.R.Bhatt,
and
I.A.Wilson
(2012).
Cross-neutralization of influenza A viruses mediated by a single antibody loop.
|
| |
Nature,
489,
526-532.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.W.Huang,
and
J.M.Yang
(2011).
Changed epitopes drive the antigenic drift for influenza A (H3N2) viruses.
|
| |
BMC Bioinformatics,
12,
S31.
|
 |
|
|
|
|
 |
T.Han,
and
W.A.Marasco
(2011).
Structural basis of influenza virus neutralization.
|
| |
Ann N Y Acad Sci,
1217,
178-190.
|
 |
|
|
|
|
 |
Y.Sun,
Y.Shi,
W.Zhang,
Q.Li,
D.Liu,
C.Vavricka,
J.Yan,
and
G.F.Gao
(2010).
In silico characterization of the functional and structural modules of the hemagglutinin protein from the swine-origin influenza virus A (H1N1)-2009.
|
| |
Sci China Life Sci,
53,
633-642.
|
 |
|
|
|
|
 |
D.C.Ekiert,
G.Bhabha,
M.A.Elsliger,
R.H.Friesen,
M.Jongeneelen,
M.Throsby,
J.Goudsmit,
and
I.A.Wilson
(2009).
Antibody recognition of a highly conserved influenza virus epitope.
|
| |
Science,
324,
246-251.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.L.Yen,
and
J.S.Peiris
(2009).
Mapping antibody epitopes of the avian H5N1 influenza virus.
|
| |
PLoS Med,
6,
e1000064.
|
 |
|
|
|
|
 |
J.L.Cherry,
D.J.Lipman,
A.Nikolskaya,
and
Y.I.Wolf
(2009).
Evolutionary dynamics of N-glycosylation sites of influenza virus hemagglutinin.
|
| |
PLoS Curr,
1,
RRN1001.
|
 |
|
|
|
|
 |
J.Shen,
B.D.Kirk,
J.Ma,
and
Q.Wang
(2009).
Diversifying selective pressure on influenza B virus hemagglutinin.
|
| |
J Med Virol,
81,
114-124.
|
 |
|
|
|
|
 |
J.Sui,
W.C.Hwang,
S.Perez,
G.Wei,
D.Aird,
L.M.Chen,
E.Santelli,
B.Stec,
G.Cadwell,
M.Ali,
H.Wan,
A.Murakami,
A.Yammanuru,
T.Han,
N.J.Cox,
L.A.Bankston,
R.O.Donis,
R.C.Liddington,
and
W.A.Marasco
(2009).
Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses.
|
| |
Nat Struct Mol Biol,
16,
265-273.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.F.Delgado,
S.Coviello,
A.C.Monsalvo,
G.A.Melendi,
J.Z.Hernandez,
J.P.Batalle,
L.Diaz,
A.Trento,
H.Y.Chang,
W.Mitzner,
J.Ravetch,
J.A.Melero,
P.M.Irusta,
and
F.P.Polack
(2009).
Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease.
|
| |
Nat Med,
15,
34-41.
|
 |
|
|
|
|
 |
N.Kowalsman,
and
M.Eisenstein
(2009).
Combining interface core and whole interface descriptors in postscan processing of protein-protein docking models.
|
| |
Proteins,
77,
297-318.
|
 |
|
|
|
|
 |
T.T.Wang,
and
P.Palese
(2009).
Universal epitopes of influenza virus hemagglutinins?
|
| |
Nat Struct Mol Biol,
16,
233-234.
|
 |
|
|
|
|
 |
G.B.Karlsson Hedestam,
R.A.Fouchier,
S.Phogat,
D.R.Burton,
J.Sodroski,
and
R.T.Wyatt
(2008).
The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus.
|
| |
Nat Rev Microbiol,
6,
143-155.
|
 |
|
|
|
|
 |
G.Conti,
W.Magliani,
S.Conti,
L.Nencioni,
R.Sgarbanti,
A.T.Palamara,
and
L.Polonelli
(2008).
Therapeutic activity of an anti-idiotypic antibody-derived killer peptide against influenza A virus experimental infection.
|
| |
Antimicrob Agents Chemother,
52,
4331-4337.
|
 |
|
|
|
|
 |
Q.Wang,
F.Cheng,
M.Lu,
X.Tian,
and
J.Ma
(2008).
Crystal structure of unliganded influenza B virus hemagglutinin.
|
| |
J Virol,
82,
3011-3020.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Knossow,
and
J.J.Skehel
(2006).
Variation and infectivity neutralization in influenza.
|
| |
Immunology,
119,
1-7.
|
 |
|
|
|
|
 |
D.Law,
M.Hotchko,
and
L.Ten Eyck
(2005).
Progress in computation and amide hydrogen exchange for prediction of protein-protein complexes.
|
| |
Proteins,
60,
302-307.
|
 |
|
|
|
|
 |
J.B.Pesavento,
S.E.Crawford,
E.Roberts,
M.K.Estes,
and
B.V.Prasad
(2005).
pH-induced conformational change of the rotavirus VP4 spike: implications for cell entry and antibody neutralization.
|
| |
J Virol,
79,
8572-8580.
|
 |
|
|
|
|
 |
J.Janin
(2005).
Assessing predictions of protein-protein interaction: the CAPRI experiment.
|
| |
Protein Sci,
14,
278-283.
|
 |
|
|
|
|
 |
C.J.Camacho,
and
D.W.Gatchell
(2003).
Successful discrimination of protein interactions.
|
| |
Proteins,
52,
92-97.
|
 |
|
|
|
|
 |
D.W.Ritchie
(2003).
Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2.
|
| |
Proteins,
52,
98.
|
 |
|
|
|
|
 |
E.Ben-Zeev,
A.Berchanski,
A.Heifetz,
B.Shapira,
and
M.Eisenstein
(2003).
Prediction of the unknown: inspiring experience with the CAPRI experiment.
|
| |
Proteins,
52,
41-46.
|
 |
|
|
|
|
 |
G.R.Smith,
and
M.J.Sternberg
(2003).
Evaluation of the 3D-Dock protein docking suite in rounds 1 and 2 of the CAPRI blind trial.
|
| |
Proteins,
52,
74-79.
|
 |
|
|
|
|
 |
J.Fernández-Recio,
M.Totrov,
and
R.Abagyan
(2003).
ICM-DISCO docking by global energy optimization with fully flexible side-chains.
|
| |
Proteins,
52,
113-117.
|
 |
|
|
|
|
 |
J.Janin,
and
B.Séraphin
(2003).
Genome-wide studies of protein-protein interaction.
|
| |
Curr Opin Struct Biol,
13,
383-388.
|
 |
|
|
|
|
 |
J.Janin,
K.Henrick,
J.Moult,
L.T.Eyck,
M.J.Sternberg,
S.Vajda,
I.Vakser,
and
S.J.Wodak
(2003).
CAPRI: a Critical Assessment of PRedicted Interactions.
|
| |
Proteins,
52,
2-9.
|
 |
|
|
|
|
 |
R.Chen,
W.Tong,
J.Mintseris,
L.Li,
and
Z.Weng
(2003).
ZDOCK predictions for the CAPRI challenge.
|
| |
Proteins,
52,
68-73.
|
 |
|
|
|
|
 |
R.Méndez,
R.Leplae,
L.De Maria,
and
S.J.Wodak
(2003).
Assessment of blind predictions of protein-protein interactions: current status of docking methods.
|
| |
Proteins,
52,
51-67.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
| |