spacer
spacer

PDBsum entry 1k2p

Go to PDB code: 
protein Protein-protein interface(s) links
Transferase PDB id
1k2p

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
258 a.a. *
* Residue conservation analysis
PDB id:
1k2p
Name: Transferase
Title: Crystal structure of bruton's tyrosine kinase domain
Structure: Tyrosine-protein kinase btk. Chain: a, b. Fragment: bruton's tyrosine kinase domain. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Dimer (from PQS)
Resolution:
2.10Å     R-factor:   0.221     R-free:   0.287
Authors: C.Mao,M.Zhou,F.M.Uckun
Key ref:
C.Mao et al. (2001). Crystal structure of Bruton's tyrosine kinase domain suggests a novel pathway for activation and provides insights into the molecular basis of X-linked agammaglobulinemia. J Biol Chem, 276, 41435-41443. PubMed id: 11527964 DOI: 10.1074/jbc.M104828200
Date:
28-Sep-01     Release date:   26-Jun-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q06187  (BTK_HUMAN) -  Tyrosine-protein kinase BTK from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
659 a.a.
258 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.7.10.2  - non-specific protein-tyrosine kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-tyrosyl-[protein] + ATP = O-phospho-L-tyrosyl-[protein] + ADP + H+
L-tyrosyl-[protein]
+ ATP
= O-phospho-L-tyrosyl-[protein]
+ ADP
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1074/jbc.M104828200 J Biol Chem 276:41435-41443 (2001)
PubMed id: 11527964  
 
 
Crystal structure of Bruton's tyrosine kinase domain suggests a novel pathway for activation and provides insights into the molecular basis of X-linked agammaglobulinemia.
C.Mao, M.Zhou, F.M.Uckun.
 
  ABSTRACT  
 
Bruton's tyrosine kinase is intimately involved in signal transduction pathways regulating survival, activation, proliferation, and differentiation of B lineage lymphoid cells. Mutations in the human btk gene are the cause of X-linked agammaglobulinemia, a male immune deficiency disorder characterized by a lack of mature, immunoglobulin-producing B lymphocytes. We have determined the x-ray crystal structure of the Bruton's tyrosine kinase kinase domain in its unphosphorylated state to a 2.1 A resolution. A comparison with the structures of other tyrosine kinases and a possible mechanism of activation unique to Bruton's tyrosine kinase are provided.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. Panel a, backbone positions of the A loop and C helix for BTK-KD (green), phospho-LCK (red), and c-SRC (white) are superimposed to illustrate their conformational differences and similarities. An AMP-PNP molecule ( pink) is present in the c-SRC crystal structure and was used to mark the location of active site. The side chains of Arg-544 and Tyr-551 in BTK and their equivalent residues in LCK and c-SRC on the A loop are shown. All coordinates were superimposed in CHAIN (28). Prepared using Insight II. Panel b, the noninhibitory (BTK) and inhibitory (IRK) conformations of the A loop are illustrated. Both crystal structures were first superimposed and shown separately in the same orientation with the A loops highlighted in rainbow tubes. Neither of the activation tyrosines is phosphorylated in the crystal structures. Prepared with GRASP (56).
Figure 3.
Fig. 3. Unique activation mechanism proposed based on the crystal structures of BTK-KD and phospho-LCK. Panel A, comparison of the superimposed BTK-KD (white backbones and multiple color side chains in stick model) and the phospho-LCK structures (gold backbones and red stick model side chains). The black lines indicate hydrogen bonds. Panel B, we propose that critical changes may occur when Arg-544 solely interacts with phosphotyrosine 551 upon phosphorylation and Arg-544 releases Glu-445, which subsequently takes part in ATP binding, which may be a critical component of catalysis. N-lobe, N-terminal lobe; C-lobe, C-terminal lobe.
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (2001, 276, 41435-41443) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21280133 A.Kuglstatter, A.Wong, S.Tsing, S.W.Lee, Y.Lou, A.G.Villaseñor, J.M.Bradshaw, D.Shaw, J.W.Barnett, and M.F.Browner (2011).
Insights into the conformational flexibility of Bruton's tyrosine kinase from multiple ligand complex structures.
  Protein Sci, 20, 428-436.
PDB codes: 3pix 3piy 3piz 3pj1 3pj2 3pj3
  20052711 D.J.Marcotte, Y.T.Liu, R.M.Arduini, C.A.Hession, K.Miatkowski, C.P.Wildes, P.F.Cullen, V.Hong, B.T.Hopkins, E.Mertsching, T.J.Jenkins, M.J.Romanowski, D.P.Baker, and L.F.Silvian (2010).
Structures of human Bruton's tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases.
  Protein Sci, 19, 429-439.
PDB codes: 3gen 3k54
19701889 C.Sacristán, S.A.Schattgen, L.J.Berg, S.C.Bunnell, A.L.Roy, and Y.Rosenstein (2009).
Characterization of a novel interaction between transcription factor TFII-I and the inducible tyrosine kinase in T cells.
  Eur J Immunol, 39, 2584-2595.  
19290922 R.E.Joseph, and A.H.Andreotti (2009).
Conformational snapshots of Tec kinases during signaling.
  Immunol Rev, 228, 74-92.  
18300055 F.M.Uckun (2008).
Clinical potential of targeting Bruton's tyrosine kinase.
  Int Rev Immunol, 27, 43-69.  
17684099 O.Hantschel, U.Rix, U.Schmidt, T.Bürckstümmer, M.Kneidinger, G.Schütze, J.Colinge, K.L.Bennett, W.Ellmeier, P.Valent, and G.Superti-Furga (2007).
The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib.
  Proc Natl Acad Sci U S A, 104, 13283-13288.  
17154430 Z.Pan, H.Scheerens, S.J.Li, B.E.Schultz, P.A.Sprengeler, L.C.Burrill, R.V.Mendonca, M.D.Sweeney, K.C.Scott, P.G.Grothaus, D.A.Jeffery, J.M.Spoerke, L.A.Honigberg, P.R.Young, S.A.Dalrymple, and J.T.Palmer (2007).
Discovery of Selective Irreversible Inhibitors for Bruton's Tyrosine Kinase.
  ChemMedChem, 2, 58-61.  
16969761 J.Väliaho, C.I.Smith, and M.Vihinen (2006).
BTKbase: the mutation database for X-linked agammaglobulinemia.
  Hum Mutat, 27, 1209-1217.  
15661031 J.M.Lindvall, K.E.Blomberg, J.Väliaho, L.Vargas, J.E.Heinonen, A.Berglöf, A.J.Mohamed, B.F.Nore, M.Vihinen, and C.I.Smith (2005).
Bruton's tyrosine kinase: cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling.
  Immunol Rev, 203, 200-215.  
15771581 L.J.Berg, L.D.Finkelstein, J.A.Lucas, and P.L.Schwartzberg (2005).
Tec family kinases in T lymphocyte development and function.
  Annu Rev Immunol, 23, 549-600.  
15837627 R.L.Levine, M.Wadleigh, J.Cools, B.L.Ebert, G.Wernig, B.J.Huntly, T.J.Boggon, I.Wlodarska, J.J.Clark, S.Moore, J.Adelsperger, S.Koo, J.C.Lee, S.Gabriel, T.Mercher, A.D'Andrea, S.Fröhling, K.Döhner, P.Marynen, P.Vandenberghe, R.A.Mesa, A.Tefferi, J.D.Griffin, M.J.Eck, W.R.Sellers, M.Meyerson, T.R.Golub, S.J.Lee, and D.G.Gilliland (2005).
Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis.
  Cancer Cell, 7, 387-397.  
15003245 C.Luo, and P.Laaja (2004).
Inhibitors of JAKs/STATs and the kinases: a possible new cluster of drugs.
  Drug Discov Today, 9, 268-275.  
15375214 S.Guo, G.Z.Ferl, R.Deora, M.Riedinger, S.Yin, J.L.Kerwin, J.A.Loo, and O.N.Witte (2004).
A phosphorylation site in Bruton's tyrosine kinase selectively regulates B cell calcium signaling efficiency by altering phospholipase C-gamma activation.
  Proc Natl Acad Sci U S A, 101, 14180-14185.  
12970174 J.A.Márquez, C.I.Smith, M.V.Petoukhov, P.Lo Surdo, P.T.Mattsson, M.Knekt, A.Westlund, K.Scheffzek, M.Saraste, and D.I.Svergun (2003).
Conformation of full-length Bruton tyrosine kinase (Btk) from synchrotron X-ray solution scattering.
  EMBO J, 22, 4616-4624.  
12854903 P.A.Goodman, C.M.Wood, A.O.Vassilev, C.Mao, and F.M.Uckun (2003).
Defective expression of Bruton's tyrosine kinase in acute lymphoblastic leukemia.
  Leuk Lymphoma, 44, 1011-1018.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer