 |
PDBsum entry 1dyk
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Metal binding protein
|
PDB id
|
|
|
|
1dyk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
EMBO J
19:1432-1440
(2000)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of the C-terminal laminin G-like domain pair of the laminin alpha2 chain harbouring binding sites for alpha-dystroglycan and heparin.
|
|
D.Tisi,
J.F.Talts,
R.Timpl,
E.Hohenester.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The laminins are large heterotrimeric glycoproteins with fundamental roles in
basement membrane architecture and function. The C-terminus of the laminin alpha
chain contains a tandem of five laminin G-like (LG) domains. We report the 2.0 A
crystal structure of the laminin alpha2 LG4-LG5 domain pair, which harbours
binding sites for heparin and the cell surface receptor alpha-dystroglycan, and
is 41% identical to the laminin alpha1 E3 fragment. LG4 and LG5 are arranged in
a V-shaped fashion related by a 110 degrees rotation about an axis passing near
the domain termini. An extended N-terminal segment is disulfide bonded to LG5
and stabilizes the domain pair. Two calcium ions, one each in LG4 and LG5, are
located 65 A apart at the tips of the domains opposite the polypeptide termini.
An extensive basic surface region between the calcium sites is proposed to bind
alpha-dystroglycan and heparin. The LG4-LG5 structure was used to construct a
model of the laminin LG1-LG5 tandem and interpret missense mutations underlying
protein S deficiency.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Figure 2 (A) The LG4–LG5 interface. The colour scheme is the
same as in Figure 1. Residues involved in inter-domain contacts
are shown as ball-and-stick models and are labelled. The most
prominent contact is centred on Phe2931 (see the text). (B)
Interactions between the N-terminal segment (in brown) and LG5
(in green). Dashed lines indicate hydrogen bonds. The electron
density shown is a simulated annealing 2F[obs] - F[calc] omit
map at 2.0 Å resolution (1.5 contouring),
in which the N-terminal segment and Cys3017 in LG5 were excluded
from the phasing model.
|
 |
Figure 4.
Figure 4 Calcium-binding sites in 2LG4–5.
(A) Calcium 1 in LG4. The calcium ligands are shown as
ball-and-stick models and are labelled. Calcium–ligand bonds
are shown as black sticks. A metal-bound water molecule is shown
in yellow. (B) Calcium 2 in LG5. The calcium coordination is
similar to calcium 1, but Asp2861 from a packing-related
molecule in the crystal (in yellow) occupies the fifth
coordination site (see the text).
|
 |
|
|
|
| |
The above figures are
reprinted
from an Open Access publication published by Macmillan Publishers Ltd:
EMBO J
(2000,
19,
1432-1440)
copyright 2000.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
D.Comoletti,
M.T.Miller,
C.M.Jeffries,
J.Wilson,
B.Demeler,
P.Taylor,
J.Trewhella,
and
T.Nakagawa
(2010).
The macromolecular architecture of extracellular domain of alphaNRXN1: domain organization, flexibility, and insights into trans-synaptic disposition.
|
| |
Structure,
18,
1044-1053.
|
 |
|
|
|
|
 |
F.Wiradjaja,
T.DiTommaso,
and
I.Smyth
(2010).
Basement membranes in development and disease.
|
| |
Birth Defects Res C Embryo Today,
90,
8.
|
 |
|
|
|
|
 |
H.Yamashita,
M.Shang,
M.Tripathi,
J.Jourquin,
W.Georgescu,
S.Liu,
B.Weidow,
and
V.Quaranta
(2010).
Epitope mapping of function-blocking monoclonal antibody CM6 suggests a "weak" integrin binding site on the laminin-332 LG2 domain.
|
| |
J Cell Physiol,
223,
541-548.
|
 |
|
|
|
|
 |
H.Yamashita,
M.Tripathi,
M.P.Harris,
S.Liu,
B.Weidow,
R.Zent,
and
V.Quaranta
(2010).
The role of a recombinant fragment of laminin-332 in integrin alpha3beta1-dependent cell binding, spreading and migration.
|
| |
Biomaterials,
31,
5110-5121.
|
 |
|
|
|
|
 |
J.Munoz,
Y.Zhou,
and
H.W.Jarrett
(2010).
LG4-5 domains of laminin-211 binds alpha-dystroglycan to allow myotube attachment and prevent anoikis.
|
| |
J Cell Physiol,
222,
111-119.
|
 |
|
|
|
|
 |
K.I.Gawlik,
M.Akerlund,
V.Carmignac,
H.Elamaa,
and
M.Durbeej
(2010).
Distinct roles for laminin globular domains in laminin alpha1 chain mediated rescue of murine laminin alpha2 chain deficiency.
|
| |
PLoS One,
5,
e11549.
|
 |
|
|
|
|
 |
T.Masaki,
and
K.Matsumura
(2010).
Biological role of dystroglycan in Schwann cell function and its implications in peripheral nervous system diseases.
|
| |
J Biomed Biotechnol,
2010,
740403.
|
 |
|
|
|
|
 |
B.Sauerzapfe,
K.Krenek,
J.Schmiedel,
W.W.Wakarchuk,
H.Pelantová,
V.Kren,
and
L.Elling
(2009).
Chemo-enzymatic synthesis of poly-N-acetyllactosamine (poly-LacNAc) structures and their characterization for CGL2-galectin-mediated binding of ECM glycoproteins to biomaterial surfaces.
|
| |
Glycoconj J,
26,
141-159.
|
 |
|
|
|
|
 |
F.Carafoli,
N.J.Clout,
and
E.Hohenester
(2009).
Crystal structure of the LG1-3 region of the laminin alpha2 chain.
|
| |
J Biol Chem,
284,
22786-22792.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.J.Hamill,
K.Kligys,
S.B.Hopkinson,
and
J.C.Jones
(2009).
Laminin deposition in the extracellular matrix: a complex picture emerges.
|
| |
J Cell Sci,
122,
4409-4417.
|
 |
|
|
|
|
 |
K.Umezawa,
J.Ikebe,
M.Nomizu,
H.Nakamura,
and
J.Higo
(2009).
Conformational requirement on peptides to exert laminin's activities and search for protein segments with laminin's activities.
|
| |
Biopolymers,
92,
124-131.
|
 |
|
|
|
|
 |
N.P.Vogtländer,
H.J.Visch,
M.A.Bakker,
J.H.Berden,
and
J.van der Vlag
(2009).
Ligation of alpha-dystroglycan on podocytes induces intracellular signaling: a new mechanism for podocyte effacement?
|
| |
PLoS One,
4,
e5979.
|
 |
|
|
|
|
 |
S.Y.Jung,
J.M.Kim,
H.K.Kang,
d.a. .H.Jang,
and
B.M.Min
(2009).
A biologically active sequence of the laminin alpha2 large globular 1 domain promotes cell adhesion through syndecan-1 by inducing phosphorylation and membrane localization of protein kinase Cdelta.
|
| |
J Biol Chem,
284,
31764-31775.
|
 |
|
|
|
|
 |
B.P.Woodall,
A.Nyström,
R.A.Iozzo,
J.A.Eble,
S.Niland,
T.Krieg,
B.Eckes,
A.Pozzi,
and
R.V.Iozzo
(2008).
Integrin {alpha}2 1 Is the Required Receptor for Endorepellin Angiostatic Activity.
|
| |
J Biol Chem,
283,
2335-2343.
|
 |
|
|
|
|
 |
M.M.Barroso,
E.Freire,
G.S.Limaverde,
G.M.Rocha,
E.J.Batista,
G.Weissmüller,
L.R.Andrade,
and
T.Coelho-Sampaio
(2008).
Artificial laminin polymers assembled in acidic pH mimic basement membrane organization.
|
| |
J Biol Chem,
283,
11714-11720.
|
 |
|
|
|
|
 |
C.Anderson,
S.J.Winder,
and
A.G.Borycki
(2007).
Dystroglycan protein distribution coincides with basement membranes and muscle differentiation during mouse embryogenesis.
|
| |
Dev Dyn,
236,
2627-2635.
|
 |
|
|
|
|
 |
C.Geslin,
M.Gaillard,
D.Flament,
K.Rouault,
M.Le Romancer,
D.Prieur,
and
G.Erauso
(2007).
Analysis of the first genome of a hyperthermophilic marine virus-like particle, PAV1, isolated from Pyrococcus abyssi.
|
| |
J Bacteriol,
189,
4510-4519.
|
 |
|
|
|
|
 |
C.O.Sallum,
R.A.Kammerer,
and
A.T.Alexandrescu
(2007).
Thermodynamic and structural studies of carbohydrate binding by the agrin-G3 domain.
|
| |
Biochemistry,
46,
9541-9550.
|
 |
|
|
|
|
 |
D.Harrison,
S.A.Hussain,
A.C.Combs,
J.M.Ervasti,
P.D.Yurchenco,
and
E.Hohenester
(2007).
Crystal structure and cell surface anchorage sites of laminin alpha1LG4-5.
|
| |
J Biol Chem,
282,
11573-11581.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.M.Leppänen,
H.Tossavainen,
P.Permi,
L.Lehtiö,
G.Rönnholm,
A.Goldman,
I.Kilpelaïnen,
and
T.Pihlajamaa
(2007).
Crystal structure of the N-terminal NC4 domain of collagen IX, a zinc binding member of the laminin-neurexin-sex hormone binding globulin (LNS) domain family.
|
| |
J Biol Chem,
282,
23219-23230.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Zhou,
D.Jiang,
D.B.Thomason,
and
H.W.Jarrett
(2007).
Laminin-induced activation of Rac1 and JNKp46 is initiated by Src family kinases and mimics the effects of skeletal muscle contraction.
|
| |
Biochemistry,
46,
14907-14916.
|
 |
|
|
|
|
 |
E.R.Graf,
Y.Kang,
A.M.Hauner,
and
A.M.Craig
(2006).
Structure function and splice site analysis of the synaptogenic activity of the neurexin-1 beta LNS domain.
|
| |
J Neurosci,
26,
4256-4265.
|
 |
|
|
|
|
 |
K.Hozumi,
N.Suzuki,
P.K.Nielsen,
M.Nomizu,
and
Y.Yamada
(2006).
Laminin alpha1 chain LG4 module promotes cell attachment through syndecans and cell spreading through integrin alpha2beta1.
|
| |
J Biol Chem,
281,
32929-32940.
|
 |
|
|
|
|
 |
L.R.Sheckler,
L.Henry,
S.Sugita,
T.C.Südhof,
and
G.Rudenko
(2006).
Crystal structure of the second LNS/LG domain from neurexin 1alpha: Ca2+ binding and the effects of alternative splicing.
|
| |
J Biol Chem,
281,
22896-22905.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Schröder,
A.Sekhar,
I.Geffers,
J.Müller,
O.Dittrich-Breiholz,
M.Kracht,
J.Wedemeyer,
and
A.Gossler
(2006).
Identification of mouse genes with highly specific expression patterns in differentiated intestinal epithelium.
|
| |
Gastroenterology,
130,
902-907.
|
 |
|
|
|
|
 |
T.Sasaki,
P.G.Knyazev,
N.J.Clout,
Y.Cheburkin,
W.Göhring,
A.Ullrich,
R.Timpl,
and
E.Hohenester
(2006).
Structural basis for Gas6-Axl signalling.
|
| |
EMBO J,
25,
80-87.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Fallahi,
B.Kroll,
L.R.Warner,
R.J.Oxford,
K.M.Irwin,
L.M.Mercer,
S.E.Shadle,
and
J.T.Oxford
(2005).
Structural model of the amino propeptide of collagen XI alpha1 chain with similarity to the LNS domains.
|
| |
Protein Sci,
14,
1526-1537.
|
 |
|
|
|
|
 |
E.M.Gonzalez,
C.C.Reed,
G.Bix,
J.Fu,
Y.Zhang,
B.Gopalakrishnan,
D.S.Greenspan,
and
R.V.Iozzo
(2005).
BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan.
|
| |
J Biol Chem,
280,
7080-7087.
|
 |
|
|
|
|
 |
G.Bix,
and
R.V.Iozzo
(2005).
Matrix revolutions: "tails" of basement-membrane components with angiostatic functions.
|
| |
Trends Cell Biol,
15,
52-60.
|
 |
|
|
|
|
 |
J.Stetefeld,
and
M.A.Ruegg
(2005).
Structural and functional diversity generated by alternative mRNA splicing.
|
| |
Trends Biochem Sci,
30,
515-521.
|
 |
|
|
|
|
 |
R.V.Iozzo
(2005).
Basement membrane proteoglycans: from cellar to ceiling.
|
| |
Nat Rev Mol Cell Biol,
6,
646-656.
|
 |
|
|
|
|
 |
S.Li,
P.Liquari,
K.K.McKee,
D.Harrison,
R.Patel,
S.Lee,
and
P.D.Yurchenco
(2005).
Laminin-sulfatide binding initiates basement membrane assembly and enables receptor signaling in Schwann cells and fibroblasts.
|
| |
J Cell Biol,
169,
179-189.
|
 |
|
|
|
|
 |
S.P.Smirnov,
P.Barzaghi,
K.K.McKee,
M.A.Ruegg,
and
P.D.Yurchenco
(2005).
Conjugation of LG domains of agrins and perlecan to polymerizing laminin-2 promotes acetylcholine receptor clustering.
|
| |
J Biol Chem,
280,
41449-41457.
|
 |
|
|
|
|
 |
D.Bozic,
F.Sciandra,
D.Lamba,
and
A.Brancaccio
(2004).
The structure of the N-terminal region of murine skeletal muscle alpha-dystroglycan discloses a modular architecture.
|
| |
J Biol Chem,
279,
44812-44816.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Stetefeld,
A.T.Alexandrescu,
M.W.Maciejewski,
M.Jenny,
K.Rathgeb-Szabo,
T.Schulthess,
R.Landwehr,
S.Frank,
M.A.Ruegg,
and
R.A.Kammerer
(2004).
Modulation of agrin function by alternative splicing and Ca2+ binding.
|
| |
Structure,
12,
503-515.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Künneken,
G.Pohlentz,
A.Schmidt-Hederich,
U.Odenthal,
N.Smyth,
J.Peter-Katalinic,
P.Bruckner,
and
J.A.Eble
(2004).
Recombinant human laminin-5 domains. Effects of heterotrimerization, proteolytic processing, and N-glycosylation on alpha3beta1 integrin binding.
|
| |
J Biol Chem,
279,
5184-5193.
|
 |
|
|
|
|
 |
T.Sasaki,
R.Fässler,
and
E.Hohenester
(2004).
Laminin: the crux of basement membrane assembly.
|
| |
J Cell Biol,
164,
959-963.
|
 |
|
|
|
|
 |
A.Utani,
Y.Momota,
H.Endo,
Y.Kasuya,
K.Beck,
N.Suzuki,
M.Nomizu,
and
H.Shinkai
(2003).
Laminin alpha 3 LG4 module induces matrix metalloproteinase-1 through mitogen-activated protein kinase signaling.
|
| |
J Biol Chem,
278,
34483-34490.
|
 |
|
|
|
|
 |
B.Saposnik,
D.Borgel,
M.Aiach,
and
S.Gandrille
(2003).
Functional properties of the sex-hormone-binding globulin (SHBG)-like domain of the anticoagulant protein S.
|
| |
Eur J Biochem,
270,
545-555.
|
 |
|
|
|
|
 |
C.N.Tseng,
L.Zhang,
M.Cascio,
and
Z.Z.Wang
(2003).
Calcium plays a critical role in determining the acetylcholine receptor-clustering activities of alternatively spliced isoforms of Agrin.
|
| |
J Biol Chem,
278,
17236-17245.
|
 |
|
|
|
|
 |
D.E.Michele,
and
K.P.Campbell
(2003).
Dystrophin-glycoprotein complex: post-translational processing and dystroglycan function.
|
| |
J Biol Chem,
278,
15457-15460.
|
 |
|
|
|
|
 |
M.Bozzi,
M.Bianchi,
F.Sciandra,
M.Paci,
B.Giardina,
A.Brancaccio,
and
D.O.Cicero
(2003).
Structural characterization by NMR of the natively unfolded extracellular domain of beta-dystroglycan: toward the identification of the binding epitope for alpha-dystroglycan.
|
| |
Biochemistry,
42,
13717-13724.
|
 |
|
|
|
|
 |
Y.Kariya,
Y.Tsubota,
T.Hirosaki,
H.Mizushima,
W.Puzon-McLaughlin,
Y.Takada,
and
K.Miyazaki
(2003).
Differential regulation of cellular adhesion and migration by recombinant laminin-5 forms with partial deletion or mutation within the G3 domain of alpha3 chain.
|
| |
J Cell Biochem,
88,
506-520.
|
 |
|
|
|
|
 |
H.J.Spence,
Y.J.Chen,
and
S.J.Winder
(2002).
Muscular dystrophies, the cytoskeleton and cell adhesion.
|
| |
Bioessays,
24,
542-552.
|
 |
|
|
|
|
 |
S.Li,
D.Harrison,
S.Carbonetto,
R.Fassler,
N.Smyth,
D.Edgar,
and
P.D.Yurchenco
(2002).
Matrix assembly, regulation, and survival functions of laminin and its receptors in embryonic stem cell differentiation.
|
| |
J Cell Biol,
157,
1279-1290.
|
 |
|
|
|
|
 |
S.M.Prince,
M.Achtman,
and
J.P.Derrick
(2002).
Crystal structure of the OpcA integral membrane adhesin from Neisseria meningitidis.
|
| |
Proc Natl Acad Sci U S A,
99,
3417-3421.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.P.Smirnov,
E.L.McDearmon,
S.Li,
J.M.Ervasti,
K.Tryggvason,
and
P.D.Yurchenco
(2002).
Contributions of the LG modules and furin processing to laminin-2 functions.
|
| |
J Biol Chem,
277,
18928-18937.
|
 |
|
|
|
|
 |
T.Hirosaki,
Y.Tsubota,
Y.Kariya,
K.Moriyama,
H.Mizushima,
and
K.Miyazaki
(2002).
Laminin-6 is activated by proteolytic processing and regulates cellular adhesion and migration differently from laminin-5.
|
| |
J Biol Chem,
277,
49287-49295.
|
 |
|
|
|
|
 |
T.Sasaki,
K.Mann,
J.H.Miner,
N.Miosge,
and
R.Timpl
(2002).
Domain IV of mouse laminin beta1 and beta2 chains.
|
| |
Eur J Biochem,
269,
431-442.
|
 |
|
|
|
|
 |
T.Sasaki,
P.G.Knyazev,
Y.Cheburkin,
W.Göhring,
D.Tisi,
A.Ullrich,
R.Timpl,
and
E.Hohenester
(2002).
Crystal structure of a C-terminal fragment of growth arrest-specific protein Gas6. Receptor tyrosine kinase activation by laminin G-like domains.
|
| |
J Biol Chem,
277,
44164-44170.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Wibawa,
H.Soebono,
and
M.Matsuo
(2002).
Association of a missense mutation of the laminin alpha2 gene with tuberculoid type of leprosy in Indonesian patients.
|
| |
Trop Med Int Health,
7,
631-636.
|
 |
|
|
|
|
 |
A.Rambukkana
(2001).
Molecular basis for the peripheral nerve predilection of Mycobacterium leprae.
|
| |
Curr Opin Microbiol,
4,
21-27.
|
 |
|
|
|
|
 |
B.O.Villoutreix,
B.Dahlbäck,
D.Borgel,
S.Gandrille,
and
Y.A.Muller
(2001).
Three-dimensional model of the SHBG-like region of anticoagulant protein S: new structure-function insights.
|
| |
Proteins,
43,
203-216.
|
 |
|
|
|
|
 |
G.Rudenko,
E.Hohenester,
and
Y.A.Muller
(2001).
LG/LNS domains: multiple functions -- one business end?
|
| |
Trends Biochem Sci,
26,
363-368.
|
 |
|
|
|
|
 |
M.Durbeej,
J.F.Talts,
M.D.Henry,
P.D.Yurchenco,
K.P.Campbell,
and
P.Ekblom
(2001).
Dystroglycan binding to laminin alpha1LG4 module influences epithelial morphogenesis of salivary gland and lung in vitro.
|
| |
Differentiation,
69,
121-134.
|
 |
|
|
|
|
 |
S.J.Winder
(2001).
The complexities of dystroglycan.
|
| |
Trends Biochem Sci,
26,
118-124.
|
 |
|
|
|
|
 |
S.Sugita,
F.Saito,
J.Tang,
J.Satz,
K.Campbell,
and
T.C.Südhof
(2001).
A stoichiometric complex of neurexins and dystroglycan in brain.
|
| |
J Cell Biol,
154,
435-445.
|
 |
|
|
|
|
 |
V.Ng,
G.Zanazzi,
R.Timpl,
J.F.Talts,
J.L.Salzer,
P.J.Brennan,
and
A.Rambukkana
(2000).
Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae.
|
| |
Cell,
103,
511-524.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |