spacer
spacer

PDBsum entry 1wkm

Go to PDB code: 
protein ligands metals links
Hydrolase PDB id
1wkm

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
295 a.a. *
Ligands
MET ×2
Metals
_MN ×4
Waters ×325
* Residue conservation analysis
PDB id:
1wkm
Name: Hydrolase
Title: The product bound form of the mn(ii)loaded methionine aminopeptidase from hyperthermophile pyrococcus furiosus
Structure: Methionine aminopeptidase. Chain: a, b. Synonym: map, peptidase m. Engineered: yes
Source: Pyrococcus furiosus. Organism_taxid: 2261. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
2.30Å     R-factor:   0.215     R-free:   0.252
Authors: A.J.Copik,B.P.Nocek,S.B.Jang,S.I.Swierczek,S.Ruebush,L.Meng, V.M.D'Souza,J.W.Peters,B.Bennett,R.C.Holz
Key ref:
A.J.Copik et al. (2005). EPR and X-ray crystallographic characterization of the product-bound form of the MnII-loaded methionyl aminopeptidase from Pyrococcus furiosus. Biochemistry, 44, 121-129. PubMed id: 15628852 DOI: 10.1021/bi048123+
Date:
01-Jun-04     Release date:   22-Feb-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P56218  (MAP2_PYRFU) -  Methionine aminopeptidase from Pyrococcus furiosus (strain ATCC 43587 / DSM 3638 / JCM 8422 / Vc1)
Seq:
Struc:
295 a.a.
295 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.4.11.18  - methionyl aminopeptidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Release of N-terminal amino acids, preferentially methionine, from peptides and arylamides.
      Cofactor: Cobalt cation

 

 
DOI no: 10.1021/bi048123+ Biochemistry 44:121-129 (2005)
PubMed id: 15628852  
 
 
EPR and X-ray crystallographic characterization of the product-bound form of the MnII-loaded methionyl aminopeptidase from Pyrococcus furiosus.
A.J.Copik, B.P.Nocek, S.I.Swierczek, S.Ruebush, S.B.Jang, L.Meng, V.M.D'souza, J.W.Peters, B.Bennett, R.C.Holz.
 
  ABSTRACT  
 
Methionine aminopeptidases (MetAPs) are ubiquitous metallohydrolases that remove the N-terminal methionine from nascent polypeptide chains. Although various crystal structures of MetAP in the presence of inhibitors have been solved, the structural aspects of the product-bound step has received little attention. Both perpendicular- and parallel-mode electron paramagnetic resonance (EPR) spectra were recorded for the Mn(II)-loaded forms of the type-I (Escherichia coli) and type-II (Pyrococcus furiosus) MetAPs in the presence of the reaction product l-methionine (L-Met). In general, similar EPR features were observed for both [MnMn(EcMetAP-I)]-L-Met and [MnMn(PfMetAP-II)]-L-Met. The observed perpendicular-mode EPR spectra consisted of a six-line hyperfine pattern at g = 2.03 (A = 8.8 mT) with less intense signals with eleven-line splitting at g = 2.4 and 1.7 (A = 4.4 mT). The former feature results from mononuclear, magnetically isolated Mn(II) ions and this signal are 3-fold more intense in the [MnMn(PfMetAP-II)]-L-Met EPR spectrum than in the [MnMn(EcMetAP-I)]-L-Met spectrum. Inspection of the EPR spectra of both [MnMn(EcMetAP-I)]-L-Met and [MnMn(PfMetAP-II)]-L-Met at 40 K in the parallel mode reveals that the [Mn(EcMetAP-I)]-L-Met spectrum exhibits a well-resolved hyperfine split pattern at g = 7.6 with a hyperfine splitting constant of A = 4.4 mT. These data suggest the presence of a magnetically coupled dinuclear Mn(II) center. On the other hand, a similar feature was not observed for the [MnMn(PfMetAP-II)]-L-Met complex. Therefore, the EPR data suggest that L-Met binds to [MnMn(EcMetAP-I)] differently than [MnMn(PfMetAP-II)]. To confirm these data, the X-ray crystal structure of [MnMn(PfMetAP-II)]-L-Met was solved to 2.3 A resolution. Both Mn1 and Mn2 reside in a distorted trigonal bipyramidal geometry, but the bridging water molecule, observed in the [CoCo(PfMetAP-II)] structure, is absent. Therefore, L-Met binding displaces this water molecule, but the carboxylate oxygen atom of L-Met does not bridge between the two Mn(II) ions. Instead, a single carboxylate oxygen atom of L-Met interacts with only Mn1, while the N-terminal amine nitrogen atom binds to M2. This L-Met binding mode is different from that observed for L-Met binding [CoCo(EcMetAP-I)]. Therefore, the catalytic mechanisms of type-I MetAPs may differ somewhat from type-II enzymes when a dinuclear metalloactive site is present.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
18952013 S.Mitra, B.Bennett, and R.C.Holz (2009).
Mutation of H63 and its catalytic affect on the methionine aminopeptidase from Escherichia coli.
  Biochim Biophys Acta, 1794, 137-143.  
17876832 B.Nocek, R.Mulligan, M.Bargassa, F.Collart, and A.Joachimiak (2008).
Crystal structure of aminopeptidase N from human pathogen Neisseria meningitidis.
  Proteins, 70, 273-279.
PDB code: 2gtq
18550540 H.Unno, T.Yamashita, S.Ujita, N.Okumura, H.Otani, A.Okumura, K.Nagai, and M.Kusunoki (2008).
Structural Basis for Substrate Recognition and Hydrolysis by Mouse Carnosinase CN2.
  J Biol Chem, 283, 27289-27299.
PDB codes: 2zof 2zog
19019076 S.Mitra, K.M.Job, L.Meng, B.Bennett, and R.C.Holz (2008).
Analyzing the catalytic role of Asp97 in the methionine aminopeptidase from Escherichia coli.
  FEBS J, 275, 6248-6259.  
19404418 N.Kisseleva, S.Kraut, A.Jäschke, and O.Schiemann (2007).
Characterizing multiple metal ion binding sites within a ribozyme by cadmium-induced EPR silencing.
  HFSP J, 1, 127-136.  
16769889 Q.Z.Ye, S.X.Xie, Z.Q.Ma, M.Huang, and R.P.Hanzlik (2006).
Structural basis of catalysis by monometalated methionine aminopeptidase.
  Proc Natl Acad Sci U S A, 103, 9470-9475.
PDB codes: 2gtx 2gu4 2gu5 2gu6 2gu7
16552144 S.X.Xie, W.J.Huang, Z.Q.Ma, M.Huang, R.P.Hanzlik, and Q.Z.Ye (2006).
Structural analysis of metalloform-selective inhibition of methionine aminopeptidase.
  Acta Crystallogr D Biol Crystallogr, 62, 425-432.
PDB codes: 2evc 2evm 2evo
16148304 J.Eichler, and M.W.Adams (2005).
Posttranslational protein modification in Archaea.
  Microbiol Mol Biol Rev, 69, 393-425.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer