 |
PDBsum entry 1aim
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Hydrolase/hydrolase inhibitor
|
PDB id
|
|
|
|
1aim
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Protein Sci
6:1603-1611
(1997)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural determinants of specificity in the cysteine protease cruzain.
|
|
S.A.Gillmor,
C.S.Craik,
R.J.Fletterick.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The structure of cruzain, an essential protease from the parasite Trypanosoma
cruzi, was determined by X-ray crystallography bound to two different covalent
inhibitors. The cruzain S2 specificity pocket is able to productively bind both
arginine and phenylalanine residues. The structures of cruzain bound to
benzoyl-Arg-Ala-fluoromethyl ketone and benzoyl-Tyr-Ala-fluoromethyl ketone at
2.2 and 2.1 A, respectively, show a pH-dependent specificity switch. Glu 205
adjusts to restructure the S2 specificity pocket, conferring right binding to
both hydrophobic and basic residues. Kinetic analysis of activated peptide
substrates shows that substrates placing hydrophobic residues in the specificity
pocket are cleaved at a broader pH range than hydrophilic substrates. These
results demonstrate how cruzain binds both basic and hydrophobic residues and
could be important for in vivo regulation of cruzain activity.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
H.C.Castro,
P.A.Abreu,
R.B.Geraldo,
R.C.Martins,
R.Dos Santos,
N.I.Loureiro,
L.M.Cabral,
and
C.R.Rodrigues
(2011).
Looking at the proteases from a simple perspective.
|
| |
J Mol Recognit,
24,
165-181.
|
 |
|
|
|
|
 |
B.K.Na,
Y.A.Bae,
Y.G.Zo,
Y.Choe,
S.H.Kim,
P.V.Desai,
M.A.Avery,
C.S.Craik,
T.S.Kim,
P.J.Rosenthal,
and
Y.Kong
(2010).
Biochemical properties of a novel cysteine protease of Plasmodium vivax, vivapain-4.
|
| |
PLoS Negl Trop Dis,
4,
e849.
|
 |
|
|
|
|
 |
J.D.Durrant,
H.Keränen,
B.A.Wilson,
and
J.A.McCammon
(2010).
Computational identification of uncharacterized cruzain binding sites.
|
| |
PLoS Negl Trop Dis,
4,
e676.
|
 |
|
|
|
|
 |
K.Brak,
I.D.Kerr,
K.T.Barrett,
N.Fuchi,
M.Debnath,
K.Ang,
J.C.Engel,
J.H.McKerrow,
P.S.Doyle,
L.S.Brinen,
and
J.A.Ellman
(2010).
Nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitors as promising new leads for Chagas disease chemotherapy.
|
| |
J Med Chem,
53,
1763-1773.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.S.Ferreira,
A.Simeonov,
A.Jadhav,
O.Eidam,
B.T.Mott,
M.J.Keiser,
J.H.McKerrow,
D.J.Maloney,
J.J.Irwin,
and
B.K.Shoichet
(2010).
Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors.
|
| |
J Med Chem,
53,
4891-4905.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.T.Chen,
L.S.Brinen,
I.D.Kerr,
E.Hansell,
P.S.Doyle,
J.H.McKerrow,
and
W.R.Roush
(2010).
In vitro and in vivo studies of the trypanocidal properties of WRR-483 against Trypanosoma cruzi.
|
| |
PLoS Negl Trop Dis,
4,
0.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.D.Kerr,
J.H.Lee,
C.J.Farady,
R.Marion,
M.Rickert,
M.Sajid,
K.C.Pandey,
C.R.Caffrey,
J.Legac,
E.Hansell,
J.H.McKerrow,
C.S.Craik,
P.J.Rosenthal,
and
L.S.Brinen
(2009).
Vinyl sulfones as antiparasitic agents and a structural basis for drug design.
|
| |
J Biol Chem,
284,
25697-25703.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.N.Rudenskaya,
and
D.V.Pupov
(2008).
Cysteine proteinases of microorganisms and viruses.
|
| |
Biochemistry (Mosc),
73,
1.
|
 |
|
|
|
|
 |
J.Scharfstein,
A.C.Monteiro,
V.Schmitz,
and
E.Svensjö
(2008).
Angiotensin-converting enzyme limits inflammation elicited by Trypanosoma cruzi cysteine proteases: a peripheral mechanism regulating adaptive immunity via the innate kinin pathway.
|
| |
Biol Chem,
389,
1015-1024.
|
 |
|
|
|
|
 |
K.N.DuBois,
M.Abodeely,
J.Sakanari,
C.S.Craik,
M.Lee,
J.H.McKerrow,
and
M.Sajid
(2008).
Identification of the major cysteine protease of Giardia and its role in encystation.
|
| |
J Biol Chem,
283,
18024-18031.
|
 |
|
|
|
|
 |
S.Ma,
L.S.Devi-Kesavan,
and
J.Gao
(2007).
Molecular dynamics simulations of the catalytic pathway of a cysteine protease: a combined QM/MM study of human cathepsin K.
|
| |
J Am Chem Soc,
129,
13633-13645.
|
 |
|
|
|
|
 |
M.Zhu,
F.Shao,
R.W.Innes,
J.E.Dixon,
and
Z.Xu
(2004).
The crystal structure of Pseudomonas avirulence protein AvrPphB: a papain-like fold with a distinct substrate-binding site.
|
| |
Proc Natl Acad Sci U S A,
101,
302-307.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.A.Judice,
L.Puzer,
S.S.Cotrin,
A.K.Carmona,
G.H.Coombs,
L.Juliano,
and
M.A.Juliano
(2004).
Carboxydipeptidase activities of recombinant cysteine peptidases. Cruzain of Trypanosoma cruzi and CPB of Leishmania mexicana.
|
| |
Eur J Biochem,
271,
1046-1053.
|
 |
|
|
|
|
 |
C.Serveau,
A.Boulangé,
F.Lecaille,
F.Gauthier,
E.Authié,
and
G.Lalmanach
(2003).
Procongopain from Trypanosoma congolense is processed at basic pH: an unusual feature among cathepsin L-like cysteine proteases.
|
| |
Biol Chem,
384,
921-927.
|
 |
|
|
|
|
 |
M.Sulpizi,
A.Laio,
J.VandeVondele,
A.Cattaneo,
U.Rothlisberger,
and
P.Carloni
(2003).
Reaction mechanism of caspases: insights from QM/MM Car-Parrinello simulations.
|
| |
Proteins,
52,
212-224.
|
 |
|
|
|
|
 |
M.Sulpizi,
U.Rothlisberger,
and
P.Carloni
(2003).
Molecular dynamics studies of caspase-3.
|
| |
Biophys J,
84,
2207-2215.
|
 |
|
|
|
|
 |
Y.A.Sabnis,
P.V.Desai,
P.J.Rosenthal,
and
M.A.Avery
(2003).
Probing the structure of falcipain-3, a cysteine protease from Plasmodium falciparum: comparative protein modeling and docking studies.
|
| |
Protein Sci,
12,
501-509.
|
 |
|
|
|
|
 |
D.J.Rigden,
V.V.Mosolov,
and
M.Y.Galperin
(2002).
Sequence conservation in the chagasin family suggests a common trend in cysteine proteinase binding by unrelated protein inhibitors.
|
| |
Protein Sci,
11,
1971-1977.
|
 |
|
|
|
|
 |
G.Lalmanach,
A.Boulangé,
C.Serveau,
F.Lecaille,
J.Scharfstein,
F.Gauthier,
and
E.Authié
(2002).
Congopain from Trypanosoma congolense: drug target and vaccine candidate.
|
| |
Biol Chem,
383,
739-749.
|
 |
|
|
|
|
 |
M.Klemba,
and
D.E.Goldberg
(2002).
Biological roles of proteases in parasitic protozoa.
|
| |
Annu Rev Biochem,
71,
275-305.
|
 |
|
|
|
|
 |
F.Lecaille,
E.Authié,
T.Moreau,
C.Serveau,
F.Gauthier,
and
G.Lalmanach
(2001).
Subsite specificity of trypanosomal cathepsin L-like cysteine proteases. Probing the S2 pocket with phenylalanine-derived amino acids.
|
| |
Eur J Biochem,
268,
2733-2741.
|
 |
|
|
|
|
 |
L.C.Alves,
R.L.Melo,
S.J.Sanderson,
J.C.Mottram,
G.H.Coombs,
G.Caliendo,
V.Santagada,
L.Juliano,
and
M.A.Juliano
(2001).
S1 subsite specificity of a recombinant cysteine proteinase, CPB, of Leishmania mexicana compared with cruzain, human cathepsin L and papain using substrates containing non-natural basic amino acids.
|
| |
Eur J Biochem,
268,
1206-1212.
|
 |
|
|
|
|
 |
L.Salvati,
M.Mattu,
F.Polticelli,
F.Tiberi,
L.Gradoni,
G.Venturini,
M.Bolognesi,
and
P.Ascenzi
(2001).
Modulation of the catalytic activity of cruzipain, the major cysteine proteinase from Trypanosoma cruzi, by temperature and pH.
|
| |
Eur J Biochem,
268,
3253-3258.
|
 |
|
|
|
|
 |
W.A.Judice,
M.H.Cezari,
A.P.Lima,
J.Scharfstein,
J.R.Chagas,
I.L.Tersariol,
M.A.Juliano,
and
L.Juliano
(2001).
Comparison of the specificity, stability and individual rate constants with respective activation parameters for the peptidase activity of cruzipain and its recombinant form, cruzain, from Trypanosoma cruzi.
|
| |
Eur J Biochem,
268,
6578-6586.
|
 |
|
|
|
|
 |
L.S.Brinen,
E.Hansell,
J.Cheng,
W.R.Roush,
J.H.McKerrow,
and
R.J.Fletterick
(2000).
A target within the target: probing cruzain's P1' site to define structural determinants for the Chagas' disease protease.
|
| |
Structure,
8,
831-840.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Furmonaviciene,
H.F.Sewell,
and
F.Shakib
(2000).
Comparative molecular modelling identifies a common putative IgE epitope on cysteine protease allergens of diverse sources.
|
| |
Clin Exp Allergy,
30,
1307-1313.
|
 |
|
|
|
|
 |
X.Du,
E.Hansell,
J.C.Engel,
C.R.Caffrey,
F.E.Cohen,
and
J.H.McKerrow
(2000).
Aryl ureas represent a new class of anti-trypanosomal agents.
|
| |
Chem Biol,
7,
733-742.
|
 |
|
|
|
|
 |
C.Serveau,
G.Lalmanach,
I.Hirata,
J.Scharfstein,
M.A.Juliano,
and
F.Gauthier
(1999).
Discrimination of cruzipain, the major cysteine proteinase of Trypanosoma cruzi, and mammalian cathepsins B and L, by a pH-inducible fluorogenic substrate of trypanosomal cysteine proteinases.
|
| |
Eur J Biochem,
259,
275-280.
|
 |
|
|
|
|
 |
M.E.McGrath
(1999).
The lysosomal cysteine proteases.
|
| |
Annu Rev Biophys Biomol Struct,
28,
181-204.
|
 |
|
|
|
|
 |
D.Turk,
G.Guncar,
M.Podobnik,
and
B.Turk
(1998).
Revised definition of substrate binding sites of papain-like cysteine proteases.
|
| |
Biol Chem,
379,
137-147.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |