spacer
spacer

PDBsum entry 6ynb

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transferase PDB id
6ynb

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
349 a.a.
13 a.a.
Ligands
IQU
DMS
Waters ×254
PDB id:
6ynb
Name: Transferase
Title: Crystal structure of camp-dependent protein kinase (pka) in complex with short-chain fasudil-derivative n-(2-aminoethyl)isoquinoline-5- sulfonamide (soaked)
Structure: Camp-dependent protein kinase catalytic subunit alpha. Chain: a. Synonym: pka c-alpha. Engineered: yes. Camp-dependent protein kinase inhibitor alpha. Chain: b. Synonym: pki-alpha,camp-dependent protein kinase inhibitor, muscle/brain isoform. Engineered: yes
Source: Cricetulus griseus. Chinese hamster. Organism_taxid: 10029. Gene: prkaca. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Synthetic: yes. Mus musculus. House mouse.
Resolution:
1.72Å     R-factor:   0.158     R-free:   0.201
Authors: M.Oebbeke,B.Wienen-Schmidt,A.Heine,G.Klebe
Key ref: B.Wienen-Schmidt et al. (2021). Two Methods, One Goal: Structural Differences between Cocrystallization and Crystal Soaking to Discover Ligand Binding Poses. ChemMedChem, 16, 292-300. PubMed id: 33029876 DOI: 10.1002/cmdc.202000565
Date:
13-Apr-20     Release date:   14-Oct-20    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P25321  (KAPCA_CRIGR) -  cAMP-dependent protein kinase catalytic subunit alpha from Cricetulus griseus
Seq:
Struc:
351 a.a.
349 a.a.*
Protein chain
Pfam   ArchSchema ?
P63248  (IPKA_MOUSE) -  cAMP-dependent protein kinase inhibitor alpha from Mus musculus
Seq:
Struc:
76 a.a.
13 a.a.*
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: Chain A: E.C.2.7.11.11  - cAMP-dependent protein kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. L-seryl-[protein] + ATP = O-phospho-L-seryl-[protein] + ADP + H+
2. L-threonyl-[protein] + ATP = O-phospho-L-threonyl-[protein] + ADP + H+
L-seryl-[protein]
+ ATP
= O-phospho-L-seryl-[protein]
+ ADP
+ H(+)
L-threonyl-[protein]
+ ATP
= O-phospho-L-threonyl-[protein]
+ ADP
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1002/cmdc.202000565 ChemMedChem 16:292-300 (2021)
PubMed id: 33029876  
 
 
Two Methods, One Goal: Structural Differences between Cocrystallization and Crystal Soaking to Discover Ligand Binding Poses.
B.Wienen-Schmidt, M.Oebbeke, K.Ngo, A.Heine, G.Klebe.
 
  ABSTRACT  
 
In lead optimization, protein crystallography is an indispensable tool to analyze drug binding. Binding modes and non-covalent interaction inventories are essential to design follow-up synthesis candidates. Two protocols are commonly applied to produce protein-ligand complexes: cocrystallization and soaking. Because of its time and cost effectiveness, soaking is the more popular method. Taking eight ligand hinge binders of protein kinase A, we demonstrate that cocrystallization is superior. Particularly for flexible proteins, such as kinases, and larger ligands cocrystallization captures more reliable the correct binding pose and induced protein adaptations. The geometrical discrepancies between soaking and cocrystallization appear smaller for fragment-sized ligands. For larger flexible ligands that trigger conformational changes of the protein, soaking can be misleading and underestimates the number of possible polar interactions due to inadequate, highly impaired positions of protein amino-acid side and main chain atoms. Thus, if applicable cocrystallization should be the gold standard to study protein-ligand complexes.
 

 

spacer

spacer