spacer
spacer

PDBsum entry 4zni

Go to PDB code: 
protein ligands links
Viral protein PDB id
4zni

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
251 a.a.
Ligands
SO4 ×7
Waters ×101
PDB id:
4zni
Name: Viral protein
Title: Thermus phage p74-26 large terminase atpase domain (i 2 3 space group)
Structure: Phage terminase large subunit. Chain: a. Fragment: residues 1-256. Engineered: yes
Source: Thermus phage p7426. Organism_taxid: 466052. Gene: p74p84. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
2.10Å     R-factor:   0.176     R-free:   0.213
Authors: B.J.Hilbert,J.A.Hayes,N.P.Stone,C.M.Duffy,B.Sankaran,B.A.Kelch
Key ref: B.J.Hilbert et al. (2015). Structure and mechanism of the ATPase that powers viral genome packaging. Proc Natl Acad Sci U S A, 112, E3792. PubMed id: 26150523 DOI: 10.1073/pnas.1506951112
Date:
04-May-15     Release date:   08-Jul-15    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
A7XXR1  (A7XXR1_BP742) -  Terminase, large subunit from Thermus virus P74-26
Seq:
Struc:
485 a.a.
251 a.a.
Key:    PfamA domain  Secondary structure

 Enzyme reactions 
   Enzyme class 1: E.C.3.1.21.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: E.C.3.6.4.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.

 

 
DOI no: 10.1073/pnas.1506951112 Proc Natl Acad Sci U S A 112:E3792 (2015)
PubMed id: 26150523  
 
 
Structure and mechanism of the ATPase that powers viral genome packaging.
B.J.Hilbert, J.A.Hayes, N.P.Stone, C.M.Duffy, B.Sankaran, B.A.Kelch.
 
  ABSTRACT  
 
Many viruses package their genomes into procapsids using an ATPase machine that is among the most powerful known biological motors. However, how this motor couples ATP hydrolysis to DNA translocation is still unknown. Here, we introduce a model system with unique properties for studying motor structure and mechanism. We describe crystal structures of the packaging motor ATPase domain that exhibit nucleotide-dependent conformational changes involving a large rotation of an entire subdomain. We also identify the arginine finger residue that catalyzes ATP hydrolysis in a neighboring motor subunit, illustrating that previous models for motor structure need revision. Our findings allow us to derive a structural model for the motor ring, which we validate using small-angle X-ray scattering and comparisons with previously published data. We illustrate the model's predictive power by identifying the motor's DNA-binding and assembly motifs. Finally, we integrate our results to propose a mechanistic model for DNA translocation by this molecular machine.
 

 

spacer

spacer