spacer
spacer

PDBsum entry 2ffh

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Protein transport PDB id
2ffh

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
407 a.a. *
Ligands
SO4 ×3
Metals
_CD ×16
* Residue conservation analysis
PDB id:
2ffh
Name: Protein transport
Title: The signal sequence binding protein ffh from thermus aquaticus
Structure: Protein (ffh). Chain: a, b, c. Fragment: residues 1-425. Synonym: fifty-four homolog, p48. Engineered: yes. Mutation: yes. Other_details: the expression insert was generated by pcr
Source: Thermus aquaticus. Organism_taxid: 271. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Hexamer (from PQS)
Resolution:
3.20Å     R-factor:   0.257     R-free:   0.296
Authors: R.J.Keenan,D.M.Freymann,P.Walter,R.M.Stroud
Key ref:
R.J.Keenan et al. (1998). Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell, 94, 181-191. PubMed id: 9695947 DOI: 10.1016/S0092-8674(00)81418-X
Date:
29-Jun-99     Release date:   16-Jul-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
O07347  (SRP54_THEAQ) -  Signal recognition particle protein from Thermus aquaticus
Seq:
Struc:
430 a.a.
407 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 

 
DOI no: 10.1016/S0092-8674(00)81418-X Cell 94:181-191 (1998)
PubMed id: 9695947  
 
 
Crystal structure of the signal sequence binding subunit of the signal recognition particle.
R.J.Keenan, D.M.Freymann, P.Walter, R.M.Stroud.
 
  ABSTRACT  
 
The crystal structure of the signal sequence binding subunit of the signal recognition particle (SRP) from Thermus aquaticus reveals a deep groove bounded by a flexible loop and lined with side chains of conserved hydrophobic residues. The groove defines a flexible, hydrophobic environment that is likely to contribute to the structural plasticity necessary for SRP to bind signal sequences of different lengths and amino acid sequence. The structure also reveals a helix-turn-helix motif containing an arginine-rich alpha helix that is required for binding to SRP RNA and is implicated in forming the core of an extended RNA binding surface.
 
  Selected figure(s)  
 
Figure 6.
Figure 6. The Hydrophobic Groove of the M Domain Is Not Empty in the CrystalThe flexible finger loop of one M domain (magenta; residues 337–355 shown) inserts into the proposed signal sequence binding groove of another M domain (white, molecular surface representation), forming a hydrophobic cavity in the center of the groove that may contain detergent from the crystallization solution. This protein–protein interaction may represent an example of the extent to which the M domain has evolved to accommodate a wide variety of hydrophobic sequences.
Figure 7.
Figure 7. The Arginine-Rich, Helix-Turn-Helix Motif of the M Domain(A) Stereo view of the HTH motif (αM3 to αM4) and a third helix (αM2) of the M domain (green) superimposed onto the corresponding region from the lac repressor (blue) ([9]). The least-squares overlap of α carbons was performed using LSQMAN ( [24]). Conserved residues contributing to the compact hydrophobic core of the lac repressor are indicated, along with their counterparts in the M domain. Helix αM4 extends beyond helix α2 of the lac repressor by vert, similar 3 additional turns and contains basic residues at an extended C terminus; these characteristics are similar to the recognition helix of homeodomain DNA-binding proteins ([14]).(B) Stereo view of the conserved SRP RNA-binding motif of Ffh. This view is rotated vert, similar 90° about the vertical axis with respect to the orientation in Figure 7A. Positively charged side chains located in helix αM3 are likely to mediate the specific interaction of the M domain with SRP RNA. Arg-387 and Arg-361 form well-ordered salt bridges with the conserved residues Glu-373 and Glu-398, respectively.
 
  The above figures are reprinted by permission from Cell Press: Cell (1998, 94, 181-191) copyright 1998.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21291501 I.Saraogi, and S.O.Shan (2011).
Molecular mechanism of co-translational protein targeting by the signal recognition particle.
  Traffic, 12, 535-542.  
22086371 R.S.Hegde, and R.J.Keenan (2011).
Tail-anchored membrane protein insertion into the endoplasmic reticulum.
  Nat Rev Mol Cell Biol, 12, 787-798.  
21336278 T.Hainzl, S.Huang, G.Meriläinen, K.Brännström, and A.E.Sauer-Eriksson (2011).
Structural basis of signal-sequence recognition by the signal recognition particle.
  Nat Struct Mol Biol, 18, 389-391.
PDB code: 3ndb
20364120 C.Y.Janda, J.Li, C.Oubridge, H.Hernández, C.V.Robinson, and K.Nagai (2010).
Recognition of a signal peptide by the signal recognition particle.
  Nature, 465, 507-510.
PDB code: 3kl4
  20672053 C.Zwieb, and S.Bhuiyan (2010).
Archaea signal recognition particle shows the way.
  Archaea, 2010, 485051.  
20850366 F.Wang, E.C.Brown, G.Mak, J.Zhuang, and V.Denic (2010).
A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum.
  Mol Cell, 40, 159-171.  
20385832 K.Shen, and S.O.Shan (2010).
Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting.
  Proc Natl Acad Sci U S A, 107, 7698-7703.  
  21113240 M.Mossalam, A.S.Dixon, and C.S.Lim (2010).
Controlling subcellular delivery to optimize therapeutic effect.
  Ther Deliv, 1, 169-193.  
19675567 A.Mateja, A.Szlachcic, M.E.Downing, M.Dobosz, M.Mariappan, R.S.Hegde, and R.J.Keenan (2009).
The structural basis of tail-anchored membrane protein recognition by Get3.
  Nature, 461, 361-366.
PDB codes: 2woj 2woo
19280642 E.M.Clérico, A.SzymaÅ„ska, and L.M.Gierasch (2009).
Exploring the interactions between signal sequences and E. coli SRP by two distinct and complementary crosslinking methods.
  Biopolymers, 92, 201-211.  
19948960 G.Bozkurt, G.Stjepanovic, F.Vilardi, S.Amlacher, K.Wild, G.Bange, V.Favaloro, K.Rippe, E.Hurt, B.Dobberstein, and I.Sinning (2009).
Structural insights into tail-anchored protein binding and membrane insertion by Get3.
  Proc Natl Acad Sci U S A, 106, 21131-21136.
PDB codes: 3iqw 3iqx
19119323 H.Merad, H.Porumb, L.Zargarian, B.René, Z.Hobaika, R.G.Maroun, O.Mauffret, and S.Fermandjian (2009).
An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF.
  PLoS ONE, 4, e4081.  
19029307 I.A.Buskiewicz, J.Jöckel, M.V.Rodnina, and W.Wintermeyer (2009).
Conformation of the signal recognition particle in ribosomal targeting complexes.
  RNA, 15, 44-54.  
19219017 I.Sinning, K.Wild, and G.Bange (2009).
Signal sequences get active.
  Nat Chem Biol, 5, 146-147.  
19469550 S.O.Shan, S.L.Schmid, and X.Zhang (2009).
Signal recognition particle (SRP) and SRP receptor: a new paradigm for multistate regulatory GTPases.
  Biochemistry, 48, 6696-6704.  
18078384 A.J.Driessen, and N.Nouwen (2008).
Protein translocation across the bacterial cytoplasmic membrane.
  Annu Rev Biochem, 77, 643-667.  
17918185 E.M.Clérico, J.L.Maki, and L.M.Gierasch (2008).
Use of synthetic signal sequences to explore the protein export machinery.
  Biopolymers, 90, 307-319.  
18953414 P.F.Egea, J.Napetschnig, P.Walter, and R.M.Stroud (2008).
Structures of SRP54 and SRP19, the two proteins that organize the ribonucleic core of the signal recognition particle from Pyrococcus furiosus.
  PLoS ONE, 3, e3528.
PDB codes: 3dlu 3dlv 3dm5
18644895 R.S.Hegde, and S.W.Kang (2008).
The concept of translocational regulation.
  J Cell Biol, 182, 225-232.  
19172744 S.B.Neher, N.Bradshaw, S.N.Floor, J.D.Gross, and P.Walter (2008).
SRP RNA controls a conformational switch regulating the SRP-SRP receptor interaction.
  Nat Struct Mol Biol, 15, 916-923.  
18618268 U.Ilangovan, S.H.Bhuiyan, C.S.Hinck, J.T.Hoyle, O.N.Pakhomova, C.Zwieb, and A.P.Hinck (2008).
A. fulgidus SRP54 M-domain.
  J Biomol NMR, 41, 241-248.
PDB code: 2jqe
18046636 X.Xu, J.Lu, Q.Lu, H.Zhong, S.Weng, and J.He (2008).
Characterization of a membrane protein (VP001L) from infectious spleen and kidney necrosis virus (ISKNV).
  Virus Genes, 36, 157-167.  
18617187 X.Zhang, S.Kung, and S.O.Shan (2008).
Demonstration of a multistep mechanism for assembly of the SRP x SRP receptor complex: implications for the catalytic role of SRP RNA.
  J Mol Biol, 381, 581-593.  
17186523 J.Gawronski-Salerno, J.S.Coon, P.J.Focia, and D.M.Freymann (2007).
X-ray structure of the T. aquaticus FtsY:GDP complex suggests functional roles for the C-terminal helix of the SRP GTPases.
  Proteins, 66, 984-995.
PDB code: 2iyl
17507650 N.Bradshaw, and P.Walter (2007).
The signal recognition particle (SRP) RNA links conformational changes in the SRP to protein targeting.
  Mol Biol Cell, 18, 2728-2734.  
17676771 S.L.Rusch, and D.A.Kendall (2007).
Interactions that drive Sec-dependent bacterial protein transport.
  Biochemistry, 46, 9665-9673.  
17846429 T.Hainzl, S.Huang, and A.E.Sauer-Eriksson (2007).
Interaction of signal-recognition particle 54 GTPase domain and signal-recognition particle RNA in the free signal-recognition particle.
  Proc Natl Acad Sci U S A, 104, 14911-14916.
PDB code: 2v3c
17086205 C.Schaffitzel, M.Oswald, I.Berger, T.Ishikawa, J.P.Abrahams, H.K.Koerten, R.I.Koning, and N.Ban (2006).
Structure of the E. coli signal recognition particle bound to a translating ribosome.
  Nature, 444, 503-506.
PDB code: 2iy3
16381838 E.S.Andersen, M.A.Rosenblad, N.Larsen, J.C.Westergaard, J.Burks, I.K.Wower, J.Wower, J.Gorodkin, T.Samuelsson, and C.Zwieb (2006).
The tmRDB and SRPDB resources.
  Nucleic Acids Res, 34, D163-D168.  
16987964 I.L.Mainprize, D.R.Beniac, E.Falkovskaia, R.M.Cleverley, L.M.Gierasch, F.P.Ottensmeyer, and D.W.Andrews (2006).
The structure of Escherichia coli signal recognition particle revealed by scanning transmission electron microscopy.
  Mol Biol Cell, 17, 5063-5074.  
17159152 M.Strohmeier, T.Raschle, J.Mazurkiewicz, K.Rippe, I.Sinning, T.B.Fitzpatrick, and I.Tews (2006).
Structure of a bacterial pyridoxal 5'-phosphate synthase complex.
  Proc Natl Acad Sci U S A, 103, 19284-19289.
PDB codes: 2nv0 2nv1 2nv2
16919958 R.S.Hegde, and H.D.Bernstein (2006).
The surprising complexity of signal sequences.
  Trends Biochem Sci, 31, 563-571.  
15923378 I.Buskiewicz, A.Kubarenko, F.Peske, M.V.Rodnina, and W.Wintermeyer (2005).
Domain rearrangement of SRP protein Ffh upon binding 4.5S RNA and the SRP receptor FtsY.
  RNA, 11, 947-957.  
16299512 R.J.Spanggord, F.Siu, A.Ke, and J.A.Doudna (2005).
RNA-mediated interaction between the peptide-binding and GTPase domains of the signal recognition particle.
  Nat Struct Mol Biol, 12, 1116-1122.  
15738266 S.Colombo, R.Longhi, S.Alcaro, F.Ortuso, T.Sprocati, A.Flora, and N.Borgese (2005).
N-myristoylation determines dual targeting of mammalian NADH-cytochrome b5 reductase to ER and mitochondrial outer membranes by a mechanism of kinetic partitioning.
  J Cell Biol, 168, 735-745.  
16043501 S.Q.Gu, J.Jöckel, P.Beinker, J.Warnecke, Y.P.Semenkov, M.V.Rodnina, and W.Wintermeyer (2005).
Conformation of 4.5S RNA in the signal recognition particle and on the 30S ribosomal subunit.
  RNA, 11, 1374-1384.  
15057280 B.Ezraty, R.Grimaud, M.El Hassouni, D.Moinier, and F.Barras (2004).
Methionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli.
  EMBO J, 23, 1868-1877.  
15166137 E.H.Williams, X.Perez-Martinez, and T.D.Fox (2004).
MrpL36p, a highly diverged L31 ribosomal protein homolog with additional functional domains in Saccharomyces cerevisiae mitochondria.
  Genetics, 167, 65-75.  
15546976 F.Chu, S.O.Shan, D.T.Moustakas, F.Alber, P.F.Egea, R.M.Stroud, P.Walter, and A.L.Burlingame (2004).
Unraveling the interface of signal recognition particle and its receptor by using chemical cross-linking and tandem mass spectrometry.
  Proc Natl Acad Sci U S A, 101, 16454-16459.  
15189152 J.A.Doudna, and R.T.Batey (2004).
Structural insights into the signal recognition particle.
  Annu Rev Biochem, 73, 539-557.  
15228518 K.Wild, K.R.Rosendal, and I.Sinning (2004).
A structural step into the SRP cycle.
  Mol Microbiol, 53, 357-363.  
15523481 K.Wild, M.Halic, I.Sinning, and R.Beckmann (2004).
SRP meets the ribosome.
  Nat Struct Mol Biol, 11, 1049-1053.  
15502345 K.Yamane, K.Bunai, and H.Kakeshita (2004).
Protein traffic for secretion and related machinery of Bacillus subtilis.
  Biosci Biotechnol Biochem, 68, 2007-2023.  
15479453 L.Paraoan, A.Ratnayaka, D.G.Spiller, P.Hiscott, M.R.White, and I.Grierson (2004).
Unexpected intracellular localization of the AMD-associated cystatin C variant.
  Traffic, 5, 884-895.  
14724630 P.F.Egea, S.O.Shan, J.Napetschnig, D.F.Savage, P.Walter, and R.M.Stroud (2004).
Substrate twinning activates the signal recognition particle and its receptor.
  Nature, 427, 215-221.
PDB code: 1rj9
14696184 P.J.Focia, H.Alam, T.Lu, U.D.Ramirez, and D.M.Freymann (2004).
Novel protein and Mg2+ configurations in the Mg2+GDP complex of the SRP GTPase ffh.
  Proteins, 54, 222-230.
PDB code: 1o87
12581661 A.E.Sauer-Eriksson, and T.Hainzl (2003).
S-domain assembly of the signal recognition particle.
  Curr Opin Struct Biol, 13, 64-70.  
12533455 C.Frasz, and C.G.Arvidson (2003).
Role for both DNA and RNA in GTP hydrolysis by the Neisseria gonorrhoeae signal recognition particle receptor.
  J Bacteriol, 185, 801-808.  
13129613 D.Linde, R.Volkmer-Engert, S.Schreiber, and J.P.Müller (2003).
Interaction of the Bacillus subtilis chaperone CsaA with the secretory protein YvaY.
  FEMS Microbiol Lett, 226, 93.  
14501130 I.V.Shepotinovskaya, P.J.Focia, and D.M.Freymann (2003).
Crystallization of the GMPPCP complex of the NG domains of Thermus aquaticus Ffh and FtsY.
  Acta Crystallogr D Biol Crystallogr, 59, 1834-1837.  
12949068 J.H.Peterson, C.A.Woolhead, and H.D.Bernstein (2003).
Basic amino acids in a distinct subset of signal peptides promote interaction with the signal recognition particle.
  J Biol Chem, 278, 46155-46162.  
12851399 K.Miyakawa, and T.Imamura (2003).
Secretion of FGF-16 requires an uncleaved bipartite signal sequence.
  J Biol Chem, 278, 35718-35724.  
12853463 K.Nagai, C.Oubridge, A.Kuglstatter, E.Menichelli, C.Isel, and L.Jovine (2003).
Structure, function and evolution of the signal recognition particle.
  EMBO J, 22, 3479-3485.  
14657338 K.R.Rosendal, K.Wild, G.Montoya, and I.Sinning (2003).
Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication.
  Proc Natl Acad Sci U S A, 100, 14701-14706.
PDB codes: 1qzw 1qzx
12663860 S.O.Shan, and P.Walter (2003).
Induced nucleotide specificity in a GTPase.
  Proc Natl Acad Sci U S A, 100, 4480-4485.  
12702815 S.Q.Gu, F.Peske, H.J.Wieden, M.V.Rodnina, and W.Wintermeyer (2003).
The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome.
  RNA, 9, 566-573.  
12736311 T.Leeper, N.Leulliot, and G.Varani (2003).
The solution structure of an essential stem-loop of human telomerase RNA.
  Nucleic Acids Res, 31, 2614-2621.
PDB code: 1oq0
12853479 V.Goder, and M.Spiess (2003).
Molecular mechanism of signal sequence orientation in the endoplasmic reticulum.
  EMBO J, 22, 3645-3653.  
12244299 A.Kuglstatter, C.Oubridge, and K.Nagai (2002).
Induced structural changes of 7SL RNA during the assembly of human signal recognition particle.
  Nat Struct Biol, 9, 740-744.
PDB code: 1mfq
11790769 B.E.Gewurz, H.L.Ploegh, and D.Tortorella (2002).
US2, a human cytomegalovirus-encoded type I membrane protein, contains a non-cleavable amino-terminal signal peptide.
  J Biol Chem, 277, 11306-11313.  
12086622 C.Oubridge, A.Kuglstatter, L.Jovine, and K.Nagai (2002).
Crystal structure of SRP19 in complex with the S domain of SRP RNA and its implication for the assembly of the signal recognition particle.
  Mol Cell, 9, 1251-1261.
PDB code: 1l9a
12022228 J.Rinke-Appel, M.Osswald, K.von Knoblauch, F.Mueller, R.Brimacombe, P.Sergiev, O.Avdeeva, A.Bogdanov, and O.Dontsova (2002).
Crosslinking of 4.5S RNA to the Escherichia coli ribosome in the presence or absence of the protein Ffh.
  RNA, 8, 612-625.  
11839493 K.Wild, O.Weichenrieder, K.Strub, I.Sinning, and S.Cusack (2002).
Towards the structure of the mammalian signal recognition particle.
  Curr Opin Struct Biol, 12, 72-81.  
12244113 L.Liu, X.H.Liang, S.Uliel, R.Unger, E.Ullu, and S.Michaeli (2002).
RNA interference of signal peptide-binding protein SRP54 elicits deleterious effects and protein sorting defects in trypanosomes.
  J Biol Chem, 277, 47348-47357.  
12244111 R.M.Cleverley, and L.M.Gierasch (2002).
Mapping the signal sequence-binding site on SRP reveals a significant role for the NG domain.
  J Biol Chem, 277, 46763-46768.  
11976293 S.K.Park, F.Jiang, R.E.Dalbey, and G.J.Phillips (2002).
Functional analysis of the signal recognition particle in Escherichia coli by characterization of a temperature-sensitive ffh mutant.
  J Bacteriol, 184, 2642-2653.  
12192071 S.Nagpal, K.J.Kaur, D.Jain, and D.M.Salunke (2002).
Plasticity in structure and interactions is critical for the action of indolicidin, an antibacterial peptide of innate immune origin.
  Protein Sci, 11, 2158-2167.  
11285222 A.Rehm, P.Stern, H.L.Ploegh, and D.Tortorella (2001).
Signal peptide cleavage of a type I membrane protein, HCMV US11, is dependent on its membrane anchor.
  EMBO J, 20, 1573-1582.  
11239791 J.Eichler, and R.Moll (2001).
The signal recognition particle of Archaea.
  Trends Microbiol, 9, 130-136.  
11233986 J.R.Jagath, N.B.Matassova, E.de Leeuw, J.M.Warnecke, G.Lentzen, M.V.Rodnina, J.Luirink, and W.Wintermeyer (2001).
Important role of the tetraloop region of 4.5S RNA in SRP binding to its receptor FtsY.
  RNA, 7, 293-301.  
11350037 O.Weichenrieder, C.Stehlin, U.Kapp, D.E.Birse, P.A.Timmins, K.Strub, and S.Cusack (2001).
Hierarchical assembly of the Alu domain of the mammalian signal recognition particle.
  RNA, 7, 731-740.  
11735405 P.Peluso, S.O.Shan, S.Nock, D.Herschlag, and P.Walter (2001).
Role of SRP RNA in the GTPase cycles of Ffh and FtsY.
  Biochemistry, 40, 15224-15233.  
11395422 R.J.Keenan, D.M.Freymann, R.M.Stroud, and P.Walter (2001).
The signal recognition particle.
  Annu Rev Biochem, 70, 755-775.  
11157762 S.Kawaguchi, J.Müller, D.Linde, S.Kuramitsu, T.Shibata, Y.Inoue, D.G.Vassylyev, and S.Yokoyama (2001).
The crystal structure of the ttCsaA protein: an export-related chaperone from Thermus thermophilus.
  EMBO J, 20, 562-569.
PDB code: 1gd7
11566135 S.Padmanabhan, and D.M.Freymann (2001).
The conformation of bound GMPPNP suggests a mechanism for gating the active site of the SRP GTPase.
  Structure, 9, 859-867.
PDB codes: 1jpj 1jpn
11123669 A.A.Herskovits, E.S.Bochkareva, and E.Bibi (2000).
New prospects in studying the bacterial signal recognition particle pathway.
  Mol Microbiol, 38, 927-939.  
10801496 G.Montoya, K.Kaat, R.Moll, G.Schäfer, and I.Sinning (2000).
The crystal structure of the conserved GTPase of SRP54 from the archaeon Acidianus ambivalens and its comparison with related structures suggests a model for the SRP-SRP receptor complex.
  Structure, 8, 515-525.
PDB codes: 1j8m 1j8y
10618370 J.C.Politz, S.Yarovoi, S.M.Kilroy, K.Gowda, C.Zwieb, and T.Pederson (2000).
Signal recognition particle components in the nucleolus.
  Proc Natl Acad Sci U S A, 97, 55-60.  
  11048650 J.Kim, and D.A.Kendall (2000).
Sec-dependent protein export and the involvement of the molecular chaperone SecB.
  Cell Stress Chaperones, 5, 267-275.  
11041851 J.L.Diener, and C.Wilson (2000).
Role of SRP19 in assembly of the Archaeoglobus fulgidus signal recognition particle.
  Biochemistry, 39, 12862-12874.  
10998167 L.Kourtz, and D.Oliver (2000).
Tyr-326 plays a critical role in controlling SecA-preprotein interaction.
  Mol Microbiol, 37, 1342-1356.  
10837244 N.Pfanner (2000).
Protein sorting: recognizing mitochondrial presequences.
  Curr Biol, 10, R412-R415.  
10896472 P.B.Rupert, and A.R.Ferré-D'amaré (2000).
SRPrises in RNA-protein recognition.
  Structure, 8, R99-104.  
11208110 P.Luan, A.Heine, K.Zeng, B.Moyer, S.E.Greasely, P.Kuhn, W.E.Balch, and I.A.Wilson (2000).
A new functional domain of guanine nucleotide dissociation inhibitor (alpha-GDI) involved in Rab recycling.
  Traffic, 1, 270-281.
PDB code: 1d5t
10678824 R.T.Batey, R.P.Rambo, L.Lucast, B.Rha, and J.A.Doudna (2000).
Crystal structure of the ribonucleoprotein core of the signal recognition particle.
  Science, 287, 1232-1239.
PDB code: 1dul
10684931 S.H.Bhuiyan, K.Gowda, H.Hotokezaka, and C.Zwieb (2000).
Assembly of archaeal signal recognition particle from recombinant components.
  Nucleic Acids Res, 28, 1365-1373.  
10944345 T.Gariani, and E.Sauer-Eriksson (2000).
Crystallization and preliminary X-ray diffraction studies of the signal recognition particle receptor FtsY from Mycoplasma mycoides.
  Acta Crystallogr D Biol Crystallogr, 56, 1030-1032.  
10611978 A.E.Johnson, and M.A.van Waes (1999).
The translocon: a dynamic gateway at the ER membrane.
  Annu Rev Cell Dev Biol, 15, 799-842.  
  10338025 K.Gowda, W.M.Clemons, C.Zwieb, and S.D.Black (1999).
Expression, purification, and crystallography of the conserved methionine-rich domain of human signal recognition particle 54 kDa protein.
  Protein Sci, 8, 1144-1151.  
10574798 K.Wild, O.Weichenrieder, G.A.Leonard, and S.Cusack (1999).
The 2 A structure of helix 6 of the human signal recognition particle RNA.
  Structure, 7, 1345-1352.
PDB code: 1d4r
10223292 M.Edman, T.Jarhede, M.Sjöström, and A.Wieslander (1999).
Different sequence patterns in signal peptides from mycoplasmas, other gram-positive bacteria, and Escherichia coli: a multivariate data analysis.
  Proteins, 35, 195-205.  
  10595556 N.Gustavsson, U.Härndahl, A.Emanuelsson, P.Roepstorff, and C.Sundby (1999).
Methionine sulfoxidation of the chloroplast small heat shock protein and conformational changes in the oligomer.
  Protein Sci, 8, 2506-2512.  
10607673 R.M.Stroud, and P.Walter (1999).
Signal sequence recognition and protein targeting.
  Curr Opin Struct Biol, 9, 754-759.  
10400475 S.Cusack (1999).
RNA-protein complexes.
  Curr Opin Struct Biol, 9, 66-73.  
10580470 U.Schmitz, S.Behrens, D.M.Freymann, R.J.Keenan, P.Lukavsky, P.Walter, and T.L.James (1999).
Structure of the phylogenetically most conserved domain of SRP RNA.
  RNA, 5, 1419-1429.
PDB codes: 1cq5 1cql
9778518 H.D.Bernstein (1998).
Protein targeting: getting into the groove.
  Curr Biol, 8, R715-R718.  
9843943 J.W.de Gier, P.A.Scotti, A.Sääf, Q.A.Valent, A.Kuhn, J.Luirink, and G.von Heijne (1998).
Differential use of the signal recognition particle translocase targeting pathway for inner membrane protein assembly in Escherichia coli.
  Proc Natl Acad Sci U S A, 95, 14646-14651.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer