PDBsum entry 1rj9

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Protein transport PDB id
Protein chains
277 a.a. *
282 a.a. *
GCP ×2
_MG ×2
Waters ×387
* Residue conservation analysis
PDB id:
Name: Protein transport
Title: Structure of the heterodimer of the conserved gtpase domains signal recognition particle (ffh) and its receptor (ftsy)
Structure: Signal recognition protein. Chain: a. Synonym: ftsy. Engineered: yes. Signal recognition particle protein. Chain: b. Fragment: ng domain (residues 1-300). Synonym: fifty-four homolog, ffh. Engineered: yes
Source: Thermus aquaticus. Organism_taxid: 271. Expressed in: escherichia coli. Expression_system_taxid: 562. Gene: ffh.
Biol. unit: Dimer (from PQS)
1.90Å     R-factor:   0.206     R-free:   0.239
Authors: P.F.Egea,S.O.Shan,J.Napetschnig,D.F.Savage,P.Walter,R.M.Stro
Key ref:
P.F.Egea et al. (2004). Substrate twinning activates the signal recognition particle and its receptor. Nature, 427, 215-221. PubMed id: 14724630 DOI: 10.1038/nature02250
18-Nov-03     Release date:   27-Jan-04    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P83749  (FTSY_THEAQ) -  Signal recognition particle receptor FtsY
304 a.a.
277 a.a.*
Protein chain
Pfam   ArchSchema ?
O07347  (SRP54_THEAQ) -  Signal recognition particle protein
430 a.a.
282 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     membrane   5 terms 
  Biological process     protein targeting to membrane   3 terms 
  Biochemical function     nucleotide binding     5 terms  


DOI no: 10.1038/nature02250 Nature 427:215-221 (2004)
PubMed id: 14724630  
Substrate twinning activates the signal recognition particle and its receptor.
P.F.Egea, S.O.Shan, J.Napetschnig, D.F.Savage, P.Walter, R.M.Stroud.
Signal sequences target proteins for secretion from cells or for integration into cell membranes. As nascent proteins emerge from the ribosome, signal sequences are recognized by the signal recognition particle (SRP), which subsequently associates with its receptor (SR). In this complex, the SRP and SR stimulate each other's GTPase activity, and GTP hydrolysis ensures unidirectional targeting of cargo through a translocation pore in the membrane. To define the mechanism of reciprocal activation, we determined the 1.9 A structure of the complex formed between these two GTPases. The two partners form a quasi-two-fold symmetrical heterodimer. Biochemical analysis supports the importance of the extensive interaction surface. Complex formation aligns the two GTP molecules in a symmetrical, composite active site, and the 3'OH groups are essential for association, reciprocal activation and catalysis. This unique circle of twinned interactions is severed twice on hydrolysis, leading to complex dissociation after cargo delivery.
  Selected figure(s)  
Figure 2.
Figure 2: The heterodimerization interface. a, Inter-residue contacts represented in a matrix. Van der Waals contacts (yellow) and hydrogen bonds (blue for side chain to side chain, green for side chain to backbone, and red for backbone to backbone) are shown. Water-mediated hydrogen bonds or ionic interactions are represented as white dots and white squares, respectively. Residue numbers and the conserved motifs are indicated. Residues indicated in bold are strictly conserved in both proteins. Symmetry across the diagonal emphasizes the quasi-two-fold symmetry. b, Interactions in the interface (orange arrows), nucleotide twinning (red arrows) and rearrangements (grey arrows). Motifs I, II, III and IV are involved in nucleotide-binding and/or catalysis. The helices 4 act as adaptors between the N and G domains. c, Surface complementarity. The complex (middle) is opened -90 (FtsY, left) and +90 (Ffh, right). GMPPCP (in sticks) and side chains (positive, blue; negative, red; hydrophobic, yellow; hydrophilic, cyan) are mapped. The cross shows a point of contact on the quasi-two-fold axis (vertical). FtsY residues are italicized whereas Ffh residues are not.
Figure 5.
Figure 5: The composite catalytic site with the twinned substrates and essential residues. a, The twinned substrates showing symmetrical hydrogen bonds between the 3'OH ribose of one GMPPCP and the -phosphate of the other GMPPCP. The two attacking waters (a.w.) are aligned for nucleophilic attack. Protein surfaces are blue (Ffh) or green (FtsY) transparent envelopes. b, Stereo view of the twinned catalytic site. The 2F[o] -F[c] electron density map (2.1 ) corresponding to Ffh (blue), FtsY (green) and ligands (orange). Residues in Ffh (blue characters) and FtsY (green italic characters) are shown; asterisks indicate residues breaking the pseudo-symmetry. Black dashed lines indicate hydrogen bonds. Orientations in a and b are identical. See Supplementary Information for a movie showing the catalytic residues, the attacking waters and the twinned nucleotides.
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2004, 427, 215-221) copyright 2004.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22343723 B.H.Várkuti, Z.Yang, B.Kintses, P.Erdélyi, I.Bárdos-Nagy, A.L.Kovács, P.Hári, M.Kellermayer, T.Vellai, and A.Málnási-Csizmadia (2012).
A novel actin binding site of myosin required for effective muscle contraction.
  Nat Struct Mol Biol, 19, 299-306.  
23235881 K.Shen, S.Arslan, D.Akopian, T.Ha, and S.O.Shan (2012).
Activated GTPase movement on an RNA scaffold drives co-translational protein targeting.
  Nature, 492, 271-275.  
23142984 W.Holtkamp, S.Lee, T.Bornemann, T.Senyushkina, M.V.Rodnina, and W.Wintermeyer (2012).
Dynamic switch of the signal recognition particle from scanning to targeting.
  Nat Struct Mol Biol, 19, 1332-1337.  
22056770 G.Bange, N.Kümmerer, P.Grudnik, R.Lindner, G.Petzold, D.Kressler, E.Hurt, K.Wild, and I.Sinning (2011).
Structural basis for the molecular evolution of SRP-GTPase activation by protein.
  Nat Struct Mol Biol, 18, 1376-1380.
PDB code: 3syn
21291501 I.Saraogi, and S.O.Shan (2011).
Molecular mechanism of co-translational protein targeting by the signal recognition particle.
  Traffic, 12, 535-542.  
21151118 L.F.Estrozi, D.Boehringer, S.O.Shan, N.Ban, and C.Schaffitzel (2011).
Cryo-EM structure of the E. coli translating ribosome in complex with SRP and its receptor.
  Nat Struct Mol Biol, 18, 88-90.
PDB code: 2xkv
  21465554 M.J.Yang, and X.Zhang (2011).
Molecular dynamics simulations reveal structural coordination of Ffh-FtsY heterodimer toward GTPase activation.
  Proteins, 79, 1774-1785.  
21276251 N.Pawlowski, A.Khaminets, J.P.Hunn, N.Papic, A.Schmidt, R.C.Uthaiah, R.Lange, G.Vopper, S.Martens, E.Wolf, and J.C.Howard (2011).
The activation mechanism of Irga6, an interferon-inducible GTPase contributing to mouse resistance against Toxoplasma gondii.
  BMC Biol, 9, 7.  
21255212 P.Kuhn, B.Weiche, L.Sturm, E.Sommer, F.Drepper, B.Warscheid, V.Sourjik, and H.G.Koch (2011).
The bacterial SRP receptor, SecA and the ribosome use overlapping binding sites on the SecY translocon.
  Traffic, 12, 563-578.  
22086371 R.S.Hegde, and R.J.Keenan (2011).
Tail-anchored membrane protein insertion into the endoplasmic reticulum.
  Nat Rev Mol Cell Biol, 12, 787-798.  
21330537 S.F.Ataide, N.Schmitz, K.Shen, A.Ke, S.O.Shan, J.A.Doudna, and N.Ban (2011).
The crystal structure of the signal recognition particle in complex with its receptor.
  Science, 331, 881-886.
PDB code: 2xxa
21336278 T.Hainzl, S.Huang, G.Meriläinen, K.Brännström, and A.E.Sauer-Eriksson (2011).
Structural basis of signal-sequence recognition by the signal recognition particle.
  Nat Struct Mol Biol, 18, 389-391.
PDB code: 3ndb
21464281 X.Zhang, V.Q.Lam, Y.Mou, T.Kimura, J.Chung, S.Chandrasekar, J.R.Winkler, S.L.Mayo, and S.O.Shan (2011).
Direct visualization reveals dynamics of a transient intermediate during protein assembly.
  Proc Natl Acad Sci U S A, 108, 6450-6455.  
  20671907 A.F.Ellen, B.Zolghadr, A.M.Driessen, and S.V.Albers (2010).
Shaping the archaeal cell envelope.
  Archaea, 2010, 608243.  
  20672053 C.Zwieb, and S.Bhuiyan (2010).
Archaea signal recognition particle shows the way.
  Archaea, 2010, 485051.  
20648672 D.Fabris, and E.T.Yu (2010).
Elucidating the higher-order structure of biopolymers by structural probing and mass spectrometry: MS3D.
  J Mass Spectrom, 45, 841-860.  
20385832 K.Shen, and S.O.Shan (2010).
Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting.
  Proc Natl Acad Sci U S A, 107, 7698-7703.  
20179341 K.Wild, G.Bange, G.Bozkurt, B.Segnitz, A.Hendricks, and I.Sinning (2010).
Structural insights into the assembly of the human and archaeal signal recognition particles.
  Acta Crystallogr D Biol Crystallogr, 66, 295-303.
PDB codes: 3ktv 3ktw
  21113240 M.Mossalam, A.S.Dixon, and C.S.Lim (2010).
Controlling subcellular delivery to optimize therapeutic effect.
  Ther Deliv, 1, 169-193.  
20544960 M.Yang, X.Zhang, and K.Han (2010).
Molecular dynamics simulation of SRP GTPases: towards an understanding of the complex formation from equilibrium fluctuations.
  Proteins, 78, 2222-2237.  
20498370 S.Falk, and I.Sinning (2010).
cpSRP43 is a novel chaperone specific for light-harvesting chlorophyll a,b-binding proteins.
  J Biol Chem, 285, 21655-21661.  
20204450 S.J.Facey, and A.Kuhn (2010).
Biogenesis of bacterial inner-membrane proteins.
  Cell Mol Life Sci, 67, 2343-2362.  
20733058 V.Q.Lam, D.Akopian, M.Rome, D.Henningsen, and S.O.Shan (2010).
Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting.
  J Cell Biol, 190, 623-635.  
19305415 B.C.Cross, I.Sinning, J.Luirink, and S.High (2009).
Delivering proteins for export from the cytosol.
  Nat Rev Mol Cell Biol, 10, 255-264.  
19219012 E.Schleiff, and R.Tampé (2009).
Membrane proteins take center stage in Frankfurt.
  Nat Chem Biol, 5, 135-139.  
19029307 I.A.Buskiewicz, J.Jöckel, M.V.Rodnina, and W.Wintermeyer (2009).
Conformation of the signal recognition particle in ribosomal targeting complexes.
  RNA, 15, 44-54.  
19531245 M.M.Meyer, T.D.Ames, D.P.Smith, Z.Weinberg, M.S.Schwalbach, S.J.Giovannoni, and R.R.Breaker (2009).
Identification of candidate structured RNAs in the marine organism 'Candidatus Pelagibacter ubique'.
  BMC Genomics, 10, 268.  
19912622 M.Mircheva, D.Boy, B.Weiche, F.Hucke, P.Graumann, and H.G.Koch (2009).
Predominant membrane localization is an essential feature of the bacterial signal recognition particle receptor.
  BMC Biol, 7, 76.  
19293157 N.J.Marty, D.Rajalingam, A.D.Kight, N.E.Lewis, D.Fologea, T.K.Kumar, R.L.Henry, and R.L.Goforth (2009).
The Membrane-binding Motif of the Chloroplast Signal Recognition Particle Receptor (cpFtsY) Regulates GTPase Activity.
  J Biol Chem, 284, 14891-14903.  
19558326 P.Grudnik, G.Bange, and I.Sinning (2009).
Protein targeting by the signal recognition particle.
  Biol Chem, 390, 775-782.  
19587121 P.Jaru-Ampornpan, T.X.Nguyen, and S.O.Shan (2009).
A distinct mechanism to achieve efficient signal recognition particle (SRP)-SRP receptor interaction by the chloroplast srp pathway.
  Mol Biol Cell, 20, 3965-3973.  
19424291 R.Gasper, S.Meyer, K.Gotthardt, M.Sirajuddin, and A.Wittinghofer (2009).
It takes two to tango: regulation of G proteins by dimerization.
  Nat Rev Mol Cell Biol, 10, 423-429.  
19806182 S.Meyer, S.Böhme, A.Krüger, H.J.Steinhoff, J.P.Klare, and A.Wittinghofer (2009).
Kissing G domains of MnmE monitored by X-ray crystallography and pulse electron paramagnetic resonance spectroscopy.
  PLoS Biol, 7, e1000212.
PDB codes: 3gee 3geh 3gei
19469550 S.O.Shan, S.L.Schmid, and X.Zhang (2009).
Signal recognition particle (SRP) and SRP receptor: a new paradigm for multistate regulatory GTPases.
  Biochemistry, 48, 6696-6704.  
19843281 V.Kriechbaumer, R.Shaw, J.Mukherjee, C.G.Bowsher, A.M.Harrison, and B.M.Abell (2009).
Subcellular distribution of tail-anchored proteins in Arabidopsis.
  Traffic, 10, 1753-1764.  
19174514 X.Zhang, C.Schaffitzel, N.Ban, and S.O.Shan (2009).
Multiple conformational switches in a GTPase complex control co-translational protein targeting.
  Proc Natl Acad Sci U S A, 106, 1754-1759.  
18373982 B.T.Layden, W.Saengsawang, R.J.Donati, S.Yang, D.C.Mulhearn, M.E.Johnson, and M.M.Rasenick (2008).
Structural model of a complex between the heterotrimeric G protein, Gsalpha, and tubulin.
  Biochim Biophys Acta, 1783, 964-973.  
18434546 C.Kötting, A.Kallenbach, Y.Suveyzdis, A.Wittinghofer, and K.Gerwert (2008).
The GAP arginine finger movement into the catalytic site of Ras increases the activation entropy.
  Proc Natl Acad Sci U S A, 105, 6260-6265.  
18611385 J.F.Ménétret, R.S.Hegde, M.Aguiar, S.P.Gygi, E.Park, T.A.Rapoport, and C.W.Akey (2008).
Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome.
  Structure, 16, 1126-1137.
PDB code: 3dkn
18772884 J.P.Hunn, S.Koenen-Waisman, N.Papic, N.Schroeder, N.Pawlowski, R.Lange, F.Kaiser, J.Zerrahn, S.Martens, and J.C.Howard (2008).
Regulatory interactions between IRG resistance GTPases in the cellular response to Toxoplasma gondii.
  EMBO J, 27, 2495-2509.  
18650931 K.Gotthardt, M.Weyand, A.Kortholt, P.J.Van Haastert, and A.Wittinghofer (2008).
Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase.
  EMBO J, 27, 2239-2249.
PDB codes: 3dpt 3dpu
18068366 M.Oreb, I.Tews, and E.Schleiff (2008).
Policing Tic 'n' Toc, the doorway to chloroplasts.
  Trends Cell Biol, 18, 19-27.  
18978942 P.F.Egea, H.Tsuruta, Leon, J.Napetschnig, P.Walter, and R.M.Stroud (2008).
Structures of the signal recognition particle receptor from the archaeon Pyrococcus furiosus: implications for the targeting step at the membrane.
  PLoS ONE, 3, e3619.
PDB codes: 3dm9 3dmd 3e70
18953414 P.F.Egea, J.Napetschnig, P.Walter, and R.M.Stroud (2008).
Structures of SRP54 and SRP19, the two proteins that organize the ribonucleic core of the signal recognition particle from Pyrococcus furiosus.
  PLoS ONE, 3, e3528.
PDB codes: 3dlu 3dlv 3dm5
18400179 P.Koenig, M.Oreb, A.Höfle, S.Kaltofen, K.Rippe, I.Sinning, E.Schleiff, and I.Tews (2008).
The GTPase cycle of the chloroplast import receptors Toc33/Toc34: implications from monomeric and dimeric structures.
  Structure, 16, 585-596.
PDB codes: 3bb1 3bb3 3bb4
18541539 P.Koenig, M.Oreb, K.Rippe, C.Muhle-Goll, I.Sinning, E.Schleiff, and I.Tews (2008).
On the significance of Toc-GTPase homodimers.
  J Biol Chem, 283, 23104-23112.
PDB code: 3def
19172744 S.B.Neher, N.Bradshaw, S.N.Floor, J.D.Gross, and P.Walter (2008).
SRP RNA controls a conformational switch regulating the SRP-SRP receptor interaction.
  Nat Struct Mol Biol, 15, 916-923.  
18573071 S.H.White, and G.von Heijne (2008).
How translocons select transmembrane helices.
  Annu Rev Biophys, 37, 23-42.  
18931411 U.D.Ramirez, P.J.Focia, and D.M.Freymann (2008).
Nucleotide-binding flexibility in ultrahigh-resolution structures of the SRP GTPase Ffh.
  Acta Crystallogr D Biol Crystallogr, 64, 1043-1053.
PDB codes: 2c03 2c04
18617187 X.Zhang, S.Kung, and S.O.Shan (2008).
Demonstration of a multistep mechanism for assembly of the SRP x SRP receptor complex: implications for the catalytic role of SRP RNA.
  J Mol Biol, 381, 581-593.  
18347066 Y.Jiang, Z.Cheng, E.C.Mandon, and R.Gilmore (2008).
An interaction between the SRP receptor and the translocon is critical during cotranslational protein translocation.
  J Cell Biol, 180, 1149-1161.  
17622352 C.L.Reyes, E.Rutenber, P.Walter, and R.M.Stroud (2007).
X-ray structures of the signal recognition particle receptor reveal targeting cycle intermediates.
  PLoS ONE, 2, e607.
PDB codes: 2q9a 2q9b 2q9c
18075576 C.V.Robinson, A.Sali, and W.Baumeister (2007).
The molecular sociology of the cell.
  Nature, 450, 973-982.  
17164479 F.Y.Siu, R.J.Spanggord, and J.A.Doudna (2007).
SRP RNA provides the physiologically essential GTPase activation function in cotranslational protein targeting.
  RNA, 13, 240-250.  
17699634 G.Bange, G.Petzold, K.Wild, R.O.Parlitz, and I.Sinning (2007).
The crystal structure of the third signal-recognition particle GTPase FlhF reveals a homodimer with bound GTP.
  Proc Natl Acad Sci U S A, 104, 13621-13625.
PDB codes: 2px0 2px3
18029258 G.Bange, K.Wild, and I.Sinning (2007).
Protein translocation: checkpoint role for SRP GTPase activation.
  Curr Biol, 17, R980-R982.  
17184999 J.Gawronski-Salerno, and D.M.Freymann (2007).
Structure of the GMPPNP-stabilized NG domain complex of the SRP GTPases Ffh and FtsY.
  J Struct Biol, 158, 122-128.
PDB code: 2j7p
17186523 J.Gawronski-Salerno, J.S.Coon, P.J.Focia, and D.M.Freymann (2007).
X-ray structure of the T. aquaticus FtsY:GDP complex suggests functional roles for the C-terminal helix of the SRP GTPases.
  Proteins, 66, 984-995.
PDB code: 2iyl
17726013 L.Bahari, R.Parlitz, A.Eitan, G.Stjepanovic, E.S.Bochkareva, I.Sinning, and E.Bibi (2007).
Membrane targeting of ribosomes and their release require distinct and separable functions of FtsY.
  J Biol Chem, 282, 32168-32175.  
17507650 N.Bradshaw, and P.Walter (2007).
The signal recognition particle (SRP) RNA links conformational changes in the SRP to protein targeting.
  Mol Biol Cell, 18, 2728-2734.  
17728257 P.A.Hubbard, D.Padovani, T.Labunska, S.A.Mahlstedt, R.Banerjee, and C.L.Drennan (2007).
Crystal structure and mutagenesis of the metallochaperone MeaB: insight into the causes of methylmalonic aciduria.
  J Biol Chem, 282, 31308-31316.
PDB codes: 2qm7 2qm8
17475780 P.Jaru-Ampornpan, S.Chandrasekar, and S.O.Shan (2007).
Efficient interaction between two GTPases allows the chloroplast SRP pathway to bypass the requirement for an SRP RNA.
  Mol Biol Cell, 18, 2636-2645.  
17726012 R.Parlitz, A.Eitan, G.Stjepanovic, L.Bahari, G.Bange, E.Bibi, and I.Sinning (2007).
Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix.
  J Biol Chem, 282, 32176-32184.  
17960736 R.Weerasekera, Y.M.She, K.A.Markham, Y.Bai, N.Opalka, S.Orlicky, F.Sicheri, T.Kislinger, and G.Schmitt-Ulms (2007).
Interactome and interface protocol (2IP): a novel strategy for high sensitivity topology mapping of protein complexes.
  Proteomics, 7, 3835-3852.  
17468740 S.Gras, V.Chaumont, B.Fernandez, P.Carpentier, F.Charrier-Savournin, S.Schmitt, C.Pineau, D.Flament, A.Hecker, P.Forterre, J.Armengaud, and D.Housset (2007).
Structural insights into a new homodimeric self-activated GTPase family.
  EMBO Rep, 8, 569-575.
PDB codes: 1yr6 1yr7 1yr8 1yr9 1yra 1yrb 2oxr
17682051 S.O.Shan, S.Chandrasekar, and P.Walter (2007).
Conformational changes in the GTPase modules of the signal reception particle and its receptor drive initiation of protein translocation.
  J Cell Biol, 178, 611-620.  
17846429 T.Hainzl, S.Huang, and A.E.Sauer-Eriksson (2007).
Interaction of signal-recognition particle 54 GTPase domain and signal-recognition particle RNA in the free signal-recognition particle.
  Proc Natl Acad Sci U S A, 104, 14911-14916.
PDB code: 2v3c
16511497 A.Ghosh, G.J.Praefcke, L.Renault, A.Wittinghofer, and C.Herrmann (2006).
How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP.
  Nature, 440, 101-104.
PDB codes: 2b8w 2b92 2bc9 2d4h
16763562 A.Scrima, and A.Wittinghofer (2006).
Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element.
  EMBO J, 25, 2940-2951.
PDB codes: 2gj8 2gj9 2gja
16356724 A.Wittinghofer (2006).
Phosphoryl transfer in Ras proteins, conclusive or elusive?
  Trends Biochem Sci, 31, 20-23.  
16968776 C.Kötting, M.Blessenohl, Y.Suveyzdis, R.S.Goody, A.Wittinghofer, and K.Gerwert (2006).
A phosphoryl transfer intermediate in the GTPase reaction of Ras in complex with its GTPase-activating protein.
  Proc Natl Acad Sci U S A, 103, 13911-13916.  
16820862 H.J.Dong, S.M.Tao, Y.Q.Li, S.H.Chan, X.L.Shen, C.X.Wang, and W.J.Guan (2006).
Analysis of the GTPase activity and active sites of the NG domains of FtsY and Ffh from Streptomyces coelicolor.
  Acta Biochim Biophys Sin (Shanghai), 38, 467-476.  
16713251 J.Bravo, and P.Aloy (2006).
Target selection for complex structural genomics.
  Curr Opin Struct Biol, 16, 385-392.  
16469117 K.Römisch, F.W.Miller, B.Dobberstein, and S.High (2006).
Human autoantibodies against the 54 kDa protein of the signal recognition particle block function at multiple stages.
  Arthritis Res Ther, 8, R39.  
16485133 L.Cladière, K.Hamze, E.Madec, V.M.Levdikov, A.J.Wilkinson, I.B.Holland, and S.J.Séror (2006).
The GTPase, CpgA(YloQ), a putative translation factor, is implicated in morphogenesis in Bacillus subtilis.
  Mol Genet Genomics, 275, 409-420.  
17086193 M.Halic, M.Blau, T.Becker, T.Mielke, M.R.Pool, K.Wild, I.Sinning, and R.Beckmann (2006).
Following the signal sequence from ribosomal tunnel exit to signal recognition particle.
  Nature, 444, 507-511.
PDB codes: 2j28 2j37
16675701 M.Halic, M.Gartmann, O.Schlenker, T.Mielke, M.R.Pool, I.Sinning, and R.Beckmann (2006).
Signal recognition particle receptor exposes the ribosomal translocon binding site.
  Science, 312, 745-747.
PDB code: 2go5
16439358 O.Schlenker, A.Hendricks, I.Sinning, and K.Wild (2006).
The structure of the mammalian signal recognition particle (SRP) receptor as prototype for the interaction of small GTPases with Longin domains.
  J Biol Chem, 281, 8898-8906.
PDB code: 2fh5
16807243 R.Gasper, A.Scrima, and A.Wittinghofer (2006).
Structural insights into HypB, a GTP-binding protein that regulates metal binding.
  J Biol Chem, 281, 27492-27502.
PDB codes: 2hf8 2hf9
16567626 T.H.Davis, and P.Walter (2006).
Profile of Peter Walter.
  Proc Natl Acad Sci U S A, 103, 5259-5261.  
16567627 T.H.Davis, and R.M.Stroud (2006).
Profile of Robert M. Stroud.
  Proc Natl Acad Sci U S A, 103, 5256-5258.  
16627619 T.U.Schwartz, D.Schmidt, S.G.Brohawn, and G.Blobel (2006).
Homodimerization of the G protein SRbeta in the nucleotide-free state involves proline cis/trans isomerization in the switch II region.
  Proc Natl Acad Sci U S A, 103, 6823-6828.
PDB code: 2ged
17139088 U.D.Ramirez, and D.M.Freymann (2006).
Analysis of protein hydration in ultrahigh-resolution structures of the SRP GTPase Ffh.
  Acta Crystallogr D Biol Crystallogr, 62, 1520-1534.
PDB codes: 2j45 2j46
17062564 V.P.Pisareva, A.V.Pisarev, C.U.Hellen, M.V.Rodnina, and T.V.Pestova (2006).
Kinetic analysis of interaction of eukaryotic release factor 3 with guanine nucleotides.
  J Biol Chem, 281, 40224-40235.  
15937164 A.Haddad, R.W.Rose, and M.Pohlschröder (2005).
The Haloferax volcanii FtsY homolog is critical for haloarchaeal growth but does not require the A domain.
  J Bacteriol, 187, 4015-4022.  
16126486 E.van Anken, and I.Braakman (2005).
Versatility of the endoplasmic reticulum protein folding factory.
  Crit Rev Biochem Mol Biol, 40, 191-228.  
15923378 I.Buskiewicz, A.Kubarenko, F.Peske, M.V.Rodnina, and W.Wintermeyer (2005).
Domain rearrangement of SRP protein Ffh upon binding 4.5S RNA and the SRP receptor FtsY.
  RNA, 11, 947-957.  
16204847 I.Res, and O.Lichtarge (2005).
Character and evolution of protein-protein interfaces.
  Phys Biol, 2, S36-S43.  
16153172 J.Luirink, G.von Heijne, E.Houben, and Gier (2005).
Biogenesis of inner membrane proteins in Escherichia coli.
  Annu Rev Microbiol, 59, 329-355.  
16153164 M.Pohlschröder, E.Hartmann, N.J.Hand, K.Dilks, and A.Haddad (2005).
Diversity and evolution of protein translocation.
  Annu Rev Microbiol, 59, 91.  
16299512 R.J.Spanggord, F.Siu, A.Ke, and J.A.Doudna (2005).
RNA-mediated interaction between the peptide-binding and GTPase domains of the signal recognition particle.
  Nat Struct Mol Biol, 12, 1116-1122.  
15635448 T.A.Leonard, P.J.Butler, and J.Löwe (2005).
Bacterial chromosome segregation: structure and DNA binding of the Soj dimer--a conserved biological switch.
  EMBO J, 24, 270-282.
PDB codes: 1wcv 2bej 2bek
15229647 B.M.Abell, M.R.Pool, O.Schlenker, I.Sinning, and S.High (2004).
Signal recognition particle mediates post-translational targeting in eukaryotes.
  EMBO J, 23, 2755-2764.  
15350979 D.S.Goldfarb, A.H.Corbett, D.A.Mason, M.T.Harreman, and S.A.Adam (2004).
Importin alpha: a multipurpose nuclear-transport receptor.
  Trends Cell Biol, 14, 505-514.  
15546976 F.Chu, S.O.Shan, D.T.Moustakas, F.Alber, P.F.Egea, R.M.Stroud, P.Walter, and A.L.Burlingame (2004).
Unraveling the interface of signal recognition particle and its receptor by using chemical cross-linking and tandem mass spectrometry.
  Proc Natl Acad Sci U S A, 101, 16454-16459.  
15189152 J.A.Doudna, and R.T.Batey (2004).
Structural insights into the signal recognition particle.
  Annu Rev Biochem, 73, 539-557.  
15228518 K.Wild, K.R.Rosendal, and I.Sinning (2004).
A structural step into the SRP cycle.
  Mol Microbiol, 53, 357-363.  
15523481 K.Wild, M.Halic, I.Sinning, and R.Beckmann (2004).
SRP meets the ribosome.
  Nat Struct Mol Biol, 11, 1049-1053.  
15502345 K.Yamane, K.Bunai, and H.Kakeshita (2004).
Protein traffic for secretion and related machinery of Bacillus subtilis.
  Biosci Biotechnol Biochem, 68, 2007-2023.  
15558053 M.A.Oliva, S.C.Cordell, and J.Löwe (2004).
Structural insights into FtsZ protofilament formation.
  Nat Struct Mol Biol, 11, 1243-1250.
PDB codes: 1w58 1w59 1w5a 1w5b 1w5e 1w5f
14726591 P.J.Focia, I.V.Shepotinovskaya, J.A.Seidler, and D.M.Freymann (2004).
Heterodimeric GTPase core of the SRP targeting complex.
  Science, 303, 373-377.
PDB code: 1okk
15193311 R.B.Russell, F.Alber, P.Aloy, F.P.Davis, D.Korkin, M.Pichaud, M.Topf, and A.Sali (2004).
A structural perspective on protein-protein interactions.
  Curr Opin Struct Biol, 14, 313-324.  
15292240 R.L.Goforth, E.C.Peterson, J.Yuan, M.J.Moore, A.D.Kight, M.B.Lohse, J.Sakon, and R.L.Henry (2004).
Regulation of the GTPase cycle in post-translational signal recognition particle-based protein targeting involves cpSRP43.
  J Biol Chem, 279, 43077-43084.  
15313232 S.H.White, and G.von Heijne (2004).
The machinery of membrane protein assembly.
  Curr Opin Struct Biol, 14, 397-404.  
15383838 S.O.Shan, R.M.Stroud, and P.Walter (2004).
Mechanism of association and reciprocal activation of two GTPases.
  PLoS Biol, 2, e320.  
15356269 Y.G.Ren, K.W.Wagner, D.A.Knee, P.Aza-Blanc, M.Nasoff, and Q.L.Deveraux (2004).
Differential regulation of the TRAIL death receptors DR4 and DR5 by the signal recognition particle.
  Mol Biol Cell, 15, 5064-5074.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.