spacer
spacer

PDBsum entry 1r9c

Go to PDB code: 
protein metals Protein-protein interface(s) links
Transferase PDB id
1r9c

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
125 a.a. *
118 a.a. *
Metals
_MN ×2
Waters ×121
* Residue conservation analysis
PDB id:
1r9c
Name: Transferase
Title: Crystal structure of fosfomycin resistance protein fosx from mesorhizobium loti
Structure: Glutathione transferase. Chain: a, b. Engineered: yes
Source: Mesorhizobium loti. Organism_taxid: 381. Gene: fosfomycin resistance protein. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Biol. unit: Dimer (from PQS)
Resolution:
1.83Å     R-factor:   0.205     R-free:   0.243
Authors: K.L.Fillgrove,S.Pakhomova,M.E.Newcomer,R.N.Armstrong
Key ref: K.L.Fillgrove et al. (2003). Mechanistic diversity of fosfomycin resistance in pathogenic microorganisms. J Am Chem Soc, 125, 15730-15731. PubMed id: 14677948 DOI: 10.1021/ja039307z
Date:
28-Oct-03     Release date:   10-Feb-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q98GG1  (FOSX_RHILO) -  Fosfomycin resistance protein FosX from Mesorhizobium japonicum (strain LMG 29417 / CECT 9101 / MAFF 303099)
Seq:
Struc:
139 a.a.
125 a.a.
Protein chain
Pfam   ArchSchema ?
Q98GG1  (FOSX_RHILO) -  Fosfomycin resistance protein FosX from Mesorhizobium japonicum (strain LMG 29417 / CECT 9101 / MAFF 303099)
Seq:
Struc:
139 a.a.
118 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains A, B: E.C.2.5.1.1  - dimethylallyltranstransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Terpenoid biosynthesis
      Reaction: isopentenyl diphosphate + dimethylallyl diphosphate = (2E)- geranyl diphosphate + diphosphate
isopentenyl diphosphate
+ dimethylallyl diphosphate
= (2E)- geranyl diphosphate
+ diphosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/ja039307z J Am Chem Soc 125:15730-15731 (2003)
PubMed id: 14677948  
 
 
Mechanistic diversity of fosfomycin resistance in pathogenic microorganisms.
K.L.Fillgrove, S.Pakhomova, M.E.Newcomer, R.N.Armstrong.
 
  ABSTRACT  
 
Microbial resistance to the antibiotic fosfomycin [(1R,2S)-epoxypropylphosphonic acid, 1] is known to be mediated by thiol transferase enzymes FosA and FosB, which catalyze the addition of glutathione and l-cysteine to C1 of the oxirane, respectively. A probe of the microbial genome database reveals a related group of enzymes (FosX). The genes mlr3345 from Mesorhizobium loti and lmo1702 from Listeria monocytogenes were cloned and the proteins expressed. This heretofore unrecognized group of enzymes is shown to catalyze the Mn(II)-dependent addition of water to C1 of the oxirane. The ability of each enzyme to confer resistance in Escherichia coli is correlated with their catalytic efficiency, such that the M. loti protein confers low resistance while the Listeria enzyme confers very robust resistance. The crystal structure of the FosX from M. loti was solved at a resolution of 1.83 A. The structure reveals an active-site carboxylate (E44) located about 5 A from the expected position of the substrate that appears to be poised to participate in catalysis. Single turnover experiments in H218O and kinetic analysis of the E44G mutant of the FosX enzymes indicate that the carboxylate of E44 acts as a general base in the direct addition of water to 1. The FosX from M. loti also catalyzes the addition of glutathione to the antibiotic. The catalytic promiscuity and low efficiency of the M. loti protein suggest that it may be an intermediate in the evolution of clinically relevant fosfomycin resistance proteins such as the FosX from Listeria monocytogenese.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21212150 V.N.De Groote, M.Fauvart, C.I.Kint, N.Verstraeten, A.Jans, P.Cornelis, and J.Michiels (2011).
Pseudomonas aeruginosa fosfomycin resistance mechanisms affect non-inherited fluoroquinolone tolerance.
  J Med Microbiol, 60, 329-336.  
20822442 M.Morar, and G.D.Wright (2010).
The genomic enzymology of antibiotic resistance.
  Annu Rev Genet, 44, 25-51.  
19196010 D.W.Brown, M.R.Schaab, W.R.Birmingham, and R.N.Armstrong (2009).
Evolution of the antibiotic resistance protein, FosA, is linked to a catalytically promiscuous progenitor.
  Biochemistry, 48, 1847-1849.  
19340413 M.Decker, M.Arand, and A.Cronin (2009).
Mammalian epoxide hydrolases in xenobiotic metabolism and signalling.
  Arch Toxicol, 83, 297-318.  
19016852 N.Allocati, L.Federici, M.Masulli, and C.Di Ilio (2009).
Glutathione transferases in bacteria.
  FEBS J, 276, 58-75.  
19277606 S.Kumar, A.Parvathi, R.L.Hernandez, K.M.Cadle, and M.F.Varela (2009).
Identification of a novel UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from Vibrio fischeri that confers high fosfomycin resistance in Escherichia coli.
  Arch Microbiol, 191, 425-429.  
15673790 S.R.Partridge, and R.M.Hall (2005).
Gene cassettes potentially encoding fosfomycin resistance determinants.
  Antimicrob Agents Chemother, 49, 860-861.  
15741169 Z.Beharry, and T.Palzkill (2005).
Functional analysis of active site residues of the fosfomycin resistance enzyme FosA from Pseudomonas aeruginosa.
  J Biol Chem, 280, 17786-17791.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time.

 

spacer

spacer