|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
133 a.a.
|
 |
|
|
|
|
|
|
|
144 a.a.
|
 |
|
|
|
|
|
|
|
155 a.a.
|
 |
|
|
|
|
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Viral protein
|
 |
|
Title:
|
 |
Crystal structure of eha2 (23-185)
|
|
Structure:
|
 |
Protein (influenza recombinant ha2 chain). Chain: a, b, c, d, e, f. Engineered: yes
|
|
Source:
|
 |
Influenza a virus. Organism_taxid: 11320. Expressed in: escherichia coli. Expression_system_taxid: 562
|
|
Biol. unit:
|
 |
Trimer (from
)
|
|
Resolution:
|
 |
|
1.90Å
|
R-factor:
|
0.229
|
R-free:
|
0.250
|
|
|
Authors:
|
 |
J.Chen,J.J.Skehel,D.C.Wiley
|
Key ref:
|
 |
J.Chen
et al.
(1999).
N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA(2) subunit to form an N cap that terminates the triple-stranded coiled coil.
Proc Natl Acad Sci U S A,
96,
8967-8972.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
05-Jul-99
|
Release date:
|
05-Jan-00
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P03437
(HEMA_I68A0) -
Hemagglutinin from Influenza A virus (strain A/Aichi/2/1968 H3N2)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
566 a.a.
133 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Proc Natl Acad Sci U S A
96:8967-8972
(1999)
|
|
PubMed id:
|
|
|
|
|
| |
|
N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA(2) subunit to form an N cap that terminates the triple-stranded coiled coil.
|
|
J.Chen,
J.J.Skehel,
D.C.Wiley.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The structure of a stable recombinant ectodomain of influenza hemagglutinin
HA(2) subunit, EHA(2) (23-185), defined by proteolysis studies of the intact
bacterial-expressed ectodomain, was determined to 1.9-A resolution by using
x-ray crystallography. The structure reveals a domain composed of N- and
C-terminal residues that form an N cap terminating both the N-terminal
alpha-helix and the central coiled coil. The N cap is formed by a conserved
sequence, and part of it is found in the neutral pH conformation of HA. The
C-terminal 23 residues of the ectodomain form a 72-A long nonhelical structure
ordered to within 7 residues of the transmembrane anchor. The structure implies
that continuous alpha helices are not required for membrane fusion at either the
N or C termini. The difference in stability between recombinant molecules with
and without the N cap sequences suggests that additional free energy for
membrane fusion may become available after the formation of the central
triple-stranded coiled coil and insertion of the fusion peptide into the target
membrane.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 4.
Fig. 4. N cap domain of EHA[2](23-185). (A) Stereo ribbon
diagram of the N-terminal residues (dark blue, dark red, dark
yellow) and the C-terminal residues (light colors) of EHA[2]
(23-185), viewed down the molecular threefold-symmetry axis. (B)
Stereoatomic diagram of the N-terminal residues (colors and view
as in A) and the C-terminal residues of EHA[2] (23-185).
Potential hydrogen bonds are green dashed lines. (C)
Stereoribbon diagram as in A but viewed perpendicular to the
molecular threefold-symmetry axis. (D) Stereoatomic diagram as
in B but viewed as in C. Figure prepared with RIBBONS (43).
|
 |
Figure 5.
Fig. 5. Comparison of TBHA[2] from low pH-treated HA and
EBHA[2](23-185). (A) TBHA[2] (residues 1-27 of HA[1] and 38-175
of HA[2]) from thermolytic digestion of low pH-treated viral
BHA. The white molecular surface is the central triple-stranded
coiled coil. The atomic models are the C-terminal residues
beyond residue 106 colored differently for each monomer. The
last residues visible in the electron density at the termini are
labeled. (B) EBHA[2] (23-185) with the N-terminal residues from
34 to 40 colored yellow. The rendering is as in A with the
visible terminal residues labeled. Figure prepared with GRASP
(44).
|
 |
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
E.Khazina,
V.Truffault,
R.Büttner,
S.Schmidt,
M.Coles,
and
O.Weichenrieder
(2011).
Trimeric structure and flexibility of the L1ORF1 protein in human L1 retrotransposition.
|
| |
Nat Struct Mol Biol,
18,
1006-1014.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Takaguchi,
T.Takahashi,
C.Hosokawa,
H.Ueyama,
K.Fukushima,
T.Hayakawa,
K.Itoh,
K.Ikeda,
and
T.Suzuki
(2011).
A single amino acid mutation at position 170 of human parainfluenza virus type 1 fusion glycoprotein induces obvious syncytium formation and caspase-3-dependent cell death.
|
| |
J Biochem,
149,
191-202.
|
 |
|
|
|
|
 |
T.Han,
and
W.A.Marasco
(2011).
Structural basis of influenza virus neutralization.
|
| |
Ann N Y Acad Sci,
1217,
178-190.
|
 |
|
|
|
|
 |
J.York,
J.D.Berry,
U.Ströher,
Q.Li,
H.Feldmann,
M.Lu,
M.Trahey,
and
J.H.Nunberg
(2010).
An antibody directed against the fusion peptide of Junin virus envelope glycoprotein GPC inhibits pH-induced membrane fusion.
|
| |
J Virol,
84,
6119-6129.
|
 |
|
|
|
|
 |
L.J.Calder,
S.Wasilewski,
J.A.Berriman,
and
P.B.Rosenthal
(2010).
Structural organization of a filamentous influenza A virus.
|
| |
Proc Natl Acad Sci U S A,
107,
10685-10690.
|
 |
|
|
|
|
 |
T.T.Wang,
G.S.Tan,
R.Hai,
N.Pica,
L.Ngai,
D.C.Ekiert,
I.A.Wilson,
A.García-Sastre,
T.M.Moran,
and
P.Palese
(2010).
Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes.
|
| |
Proc Natl Acad Sci U S A,
107,
18979-18984.
|
 |
|
|
|
|
 |
D.C.Ekiert,
G.Bhabha,
M.A.Elsliger,
R.H.Friesen,
M.Jongeneelen,
M.Throsby,
J.Goudsmit,
and
I.A.Wilson
(2009).
Antibody recognition of a highly conserved influenza virus epitope.
|
| |
Science,
324,
246-251.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Liu,
Y.Deng,
A.K.Dey,
J.P.Moore,
and
M.Lu
(2009).
Structure of the HIV-1 gp41 membrane-proximal ectodomain region in a putative prefusion conformation.
|
| |
Biochemistry,
48,
2915-2923.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Sui,
W.C.Hwang,
S.Perez,
G.Wei,
D.Aird,
L.M.Chen,
E.Santelli,
B.Stec,
G.Cadwell,
M.Ali,
H.Wan,
A.Murakami,
A.Yammanuru,
T.Han,
N.J.Cox,
L.A.Bankston,
R.O.Donis,
R.C.Liddington,
and
W.A.Marasco
(2009).
Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses.
|
| |
Nat Struct Mol Biol,
16,
265-273.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Sackett,
M.J.Nethercott,
Y.Shai,
and
D.P.Weliky
(2009).
Hairpin folding of HIV gp41 abrogates lipid mixing function at physiologic pH and inhibits lipid mixing by exposed gp41 constructs.
|
| |
Biochemistry,
48,
2714-2722.
|
 |
|
|
|
|
 |
Q.Huang,
T.Korte,
P.S.Rachakonda,
E.W.Knapp,
and
A.Herrmann
(2009).
Energetics of the loop-to-helix transition leading to the coiled-coil structure of influenza virus hemagglutinin HA2 subunits.
|
| |
Proteins,
74,
291-303.
|
 |
|
|
|
|
 |
D.I.Bernstein,
N.Goyette,
R.Cardin,
E.R.Kern,
G.Boivin,
J.Ireland,
J.M.Juteau,
and
A.Vaillant
(2008).
Amphipathic DNA polymers exhibit antiherpetic activity in vitro and in vivo.
|
| |
Antimicrob Agents Chemother,
52,
2727-2733.
|
 |
|
|
|
|
 |
D.Lamb,
A.W.Schüttelkopf,
D.M.van Aalten,
and
D.W.Brighty
(2008).
Highly specific inhibition of leukaemia virus membrane fusion by interaction of peptide antagonists with a conserved region of the coiled coil of envelope.
|
| |
Retrovirology,
5,
70.
|
 |
|
|
|
|
 |
G.Long,
X.Pan,
and
J.M.Vlak
(2008).
Conserved leucines in N-terminal heptad repeat HR1 of envelope fusion protein F of group II nucleopolyhedroviruses are important for correct processing and essential for fusogenicity.
|
| |
J Virol,
82,
2437-2447.
|
 |
|
|
|
|
 |
J.Curtis-Fisk,
R.M.Spencer,
and
D.P.Weliky
(2008).
Isotopically labeled expression in E. coli, purification, and refolding of the full ectodomain of the influenza virus membrane fusion protein.
|
| |
Protein Expr Purif,
61,
212-219.
|
 |
|
|
|
|
 |
J.M.White,
S.E.Delos,
M.Brecher,
and
K.Schornberg
(2008).
Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme.
|
| |
Crit Rev Biochem Mol Biol,
43,
189-219.
|
 |
|
|
|
|
 |
M.L.Bodner,
C.M.Gabrys,
J.O.Struppe,
and
D.P.Weliky
(2008).
13C-13C and (15)N-(13)C correlation spectroscopy of membrane-associated and uniformly labeled human immunodeficiency virus and influenza fusion peptides: amino acid-type assignments and evidence for multiple conformations.
|
| |
J Chem Phys,
128,
052319.
|
 |
|
|
|
|
 |
R.J.Russell,
P.S.Kerry,
D.J.Stevens,
D.A.Steinhauer,
S.R.Martin,
S.J.Gamblin,
and
J.J.Skehel
(2008).
Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion.
|
| |
Proc Natl Acad Sci U S A,
105,
17736-17741.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.C.Harrison
(2008).
Viral membrane fusion.
|
| |
Nat Struct Mol Biol,
15,
690-698.
|
 |
|
|
|
|
 |
Y.Su,
X.Zhu,
Y.Wang,
M.Wu,
and
P.Tien
(2008).
Evaluation of Glu11 and Gly8 of the H5N1 influenza hemagglutinin fusion peptide in membrane fusion using pseudotype virus and reverse genetics.
|
| |
Arch Virol,
153,
247-257.
|
 |
|
|
|
|
 |
Z.N.Li,
B.J.Lee,
W.A.Langley,
K.C.Bradley,
R.J.Russell,
and
D.A.Steinhauer
(2008).
Length requirements for membrane fusion of influenza virus hemagglutinin peptide linkers to transmembrane or fusion peptide domains.
|
| |
J Virol,
82,
6337-6348.
|
 |
|
|
|
|
 |
J.G.Smith,
and
J.M.Cunningham
(2007).
Receptor-induced thiolate couples Env activation to retrovirus fusion and infection.
|
| |
PLoS Pathog,
3,
e198.
|
 |
|
|
|
|
 |
Q.S.Du,
R.B.Huang,
Y.T.Wei,
C.H.Wang,
and
K.C.Chou
(2007).
Peptide reagent design based on physical and chemical properties of amino acid residues.
|
| |
J Comput Chem,
28,
2043-2050.
|
 |
|
|
|
|
 |
R.A.Lamb,
and
T.S.Jardetzky
(2007).
Structural basis of viral invasion: lessons from paramyxovirus F.
|
| |
Curr Opin Struct Biol,
17,
427-436.
|
 |
|
|
|
|
 |
R.M.Markosyan,
M.Kielian,
and
F.S.Cohen
(2007).
Fusion induced by a class II viral fusion protein, semliki forest virus E1, is dependent on the voltage of the target cell.
|
| |
J Virol,
81,
11218-11225.
|
 |
|
|
|
|
 |
A.Vaillant,
J.M.Juteau,
H.Lu,
S.Liu,
C.Lackman-Smith,
R.Ptak,
and
S.Jiang
(2006).
Phosphorothioate oligonucleotides inhibit human immunodeficiency virus type 1 fusion by blocking gp41 core formation.
|
| |
Antimicrob Agents Chemother,
50,
1393-1401.
|
 |
|
|
|
|
 |
H.S.Choi,
J.Huh,
and
W.H.Jo
(2006).
Electrostatic energy calculation on the pH-induced conformational change of influenza virus hemagglutinin.
|
| |
Biophys J,
91,
55-60.
|
 |
|
|
|
|
 |
I.M.Lister,
N.J.Tolliday,
and
R.Li
(2006).
Characterization of the minimum domain required for targeting budding yeast myosin II to the site of cell division.
|
| |
BMC Biol,
4,
19.
|
 |
|
|
|
|
 |
J.Doyle,
A.Prussia,
L.K.White,
A.Sun,
D.C.Liotta,
J.P.Snyder,
R.W.Compans,
and
R.K.Plemper
(2006).
Two domains that control prefusion stability and transport competence of the measles virus fusion protein.
|
| |
J Virol,
80,
1524-1536.
|
 |
|
|
|
|
 |
M.Knossow,
and
J.J.Skehel
(2006).
Variation and infectivity neutralization in influenza.
|
| |
Immunology,
119,
1-7.
|
 |
|
|
|
|
 |
H.S.Yin,
R.G.Paterson,
X.Wen,
R.A.Lamb,
and
T.S.Jardetzky
(2005).
Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein.
|
| |
Proc Natl Acad Sci U S A,
102,
9288-9293.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.A.Wilson,
S.Bär,
A.L.Maerz,
M.Alizon,
and
P.Poumbourios
(2005).
The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function.
|
| |
J Virol,
79,
4533-4539.
|
 |
|
|
|
|
 |
M.Tsurudome
(2005).
[Viral fusion mechanisms]
|
| |
Uirusu,
55,
207-219.
|
 |
|
|
|
|
 |
W.Ou,
and
J.Silver
(2005).
Inhibition of murine leukemia virus envelope protein (env) processing by intracellular expression of the env N-terminal heptad repeat region.
|
| |
J Virol,
79,
4782-4792.
|
 |
|
|
|
|
 |
Y.Li,
X.Han,
A.L.Lai,
J.H.Bushweller,
D.S.Cafiso,
and
L.K.Tamm
(2005).
Membrane structures of the hemifusion-inducing fusion peptide mutant G1S and the fusion-blocking mutant G1V of influenza virus hemagglutinin suggest a mechanism for pore opening in membrane fusion.
|
| |
J Virol,
79,
12065-12076.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
F.S.Cohen,
and
G.B.Melikyan
(2004).
The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement.
|
| |
J Membr Biol,
199,
1.
|
 |
|
|
|
|
 |
P.Ingallinella,
E.Bianchi,
M.Finotto,
G.Cantoni,
D.M.Eckert,
V.M.Supekar,
C.Bruckmann,
A.Carfi,
and
A.Pessi
(2004).
Structural characterization of the fusion-active complex of severe acute respiratory syndrome (SARS) coronavirus.
|
| |
Proc Natl Acad Sci U S A,
101,
8709-8714.
|
 |
|
|
|
|
 |
R.M.Markosyan,
P.Bates,
F.S.Cohen,
and
G.B.Melikyan
(2004).
A study of low pH-induced refolding of Env of avian sarcoma and leukosis virus into a six-helix bundle.
|
| |
Biophys J,
87,
3291-3298.
|
 |
|
|
|
|
 |
Y.Modis,
S.Ogata,
D.Clements,
and
S.C.Harrison
(2004).
Structure of the dengue virus envelope protein after membrane fusion.
|
| |
Nature,
427,
313-319.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.D.Zelus,
J.H.Schickli,
D.M.Blau,
S.R.Weiss,
and
K.V.Holmes
(2003).
Conformational changes in the spike glycoprotein of murine coronavirus are induced at 37 degrees C either by soluble murine CEACAM1 receptors or by pH 8.
|
| |
J Virol,
77,
830-840.
|
 |
|
|
|
|
 |
B.J.Bosch,
R.van der Zee,
C.A.de Haan,
and
P.J.Rottier
(2003).
The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex.
|
| |
J Virol,
77,
8801-8811.
|
 |
|
|
|
|
 |
C.J.Russell,
K.L.Kantor,
T.S.Jardetzky,
and
R.A.Lamb
(2003).
A dual-functional paramyxovirus F protein regulatory switch segment: activation and membrane fusion.
|
| |
J Cell Biol,
163,
363-374.
|
 |
|
|
|
|
 |
H.E.Park,
J.A.Gruenke,
and
J.M.White
(2003).
Leash in the groove mechanism of membrane fusion.
|
| |
Nat Struct Biol,
10,
1048-1053.
|
 |
|
|
|
|
 |
J.Yang,
and
D.P.Weliky
(2003).
Solid-state nuclear magnetic resonance evidence for parallel and antiparallel strand arrangements in the membrane-associated HIV-1 fusion peptide.
|
| |
Biochemistry,
42,
11879-11890.
|
 |
|
|
|
|
 |
L.K.Tamm,
J.Crane,
and
V.Kiessling
(2003).
Membrane fusion: a structural perspective on the interplay of lipids and proteins.
|
| |
Curr Opin Struct Biol,
13,
453-466.
|
 |
|
|
|
|
 |
M.Madhusoodanan,
and
T.Lazaridis
(2003).
Investigation of pathways for the low-pH conformational transition in influenza hemagglutinin.
|
| |
Biophys J,
84,
1926-1939.
|
 |
|
|
|
|
 |
P.M.Colman,
and
M.C.Lawrence
(2003).
The structural biology of type I viral membrane fusion.
|
| |
Nat Rev Mol Cell Biol,
4,
309-319.
|
 |
|
|
|
|
 |
E.Leikina,
C.Ramos,
I.Markovic,
J.Zimmerberg,
and
L.V.Chernomordik
(2002).
Reversible stages of the low-pH-triggered conformational change in influenza virus hemagglutinin.
|
| |
EMBO J,
21,
5701-5710.
|
 |
|
|
|
|
 |
J.A.Gruenke,
R.T.Armstrong,
W.W.Newcomb,
J.C.Brown,
and
J.M.White
(2002).
New insights into the spring-loaded conformational change of influenza virus hemagglutinin.
|
| |
J Virol,
76,
4456-4466.
|
 |
|
|
|
|
 |
L.K.Tamm,
X.Han,
Y.Li,
and
A.L.Lai
(2002).
Structure and function of membrane fusion peptides.
|
| |
Biopolymers,
66,
249-260.
|
 |
|
|
|
|
 |
Q.Huang,
R.Opitz,
E.W.Knapp,
and
A.Herrmann
(2002).
Protonation and stability of the globular domain of influenza virus hemagglutinin.
|
| |
Biophys J,
82,
1050-1058.
|
 |
|
|
|
|
 |
A.L.Maerz,
H.E.Drummer,
K.A.Wilson,
and
P.Poumbourios
(2001).
Functional analysis of the disulfide-bonded loop/chain reversal region of human immunodeficiency virus type 1 gp41 reveals a critical role in gp120-gp41 association.
|
| |
J Virol,
75,
6635-6644.
|
 |
|
|
|
|
 |
D.M.Eckert,
and
P.S.Kim
(2001).
Mechanisms of viral membrane fusion and its inhibition.
|
| |
Annu Rev Biochem,
70,
777-810.
|
 |
|
|
|
|
 |
K.Dutta,
A.Alexandrov,
H.Huang,
and
S.M.Pascal
(2001).
pH-induced folding of an apoptotic coiled coil.
|
| |
Protein Sci,
10,
2531-2540.
|
 |
|
|
|
|
 |
K.J.Cross,
S.A.Wharton,
J.J.Skehel,
D.C.Wiley,
and
D.A.Steinhauer
(2001).
Studies on influenza haemagglutinin fusion peptide mutants generated by reverse genetics.
|
| |
EMBO J,
20,
4432-4442.
|
 |
|
|
|
|
 |
R.M.Markosyan,
G.B.Melikyan,
and
F.S.Cohen
(2001).
Evolution of intermediates of influenza virus hemagglutinin-mediated fusion revealed by kinetic measurements of pore formation.
|
| |
Biophys J,
80,
812-821.
|
 |
|
|
|
|
 |
S.Schreiber,
K.Ludwig,
A.Herrmann,
and
H.G.Holzhütter
(2001).
Stochastic simulation of hemagglutinin-mediated fusion pore formation.
|
| |
Biophys J,
81,
1360-1372.
|
 |
|
|
|
|
 |
A.L.Maerz,
R.J.Center,
B.E.Kemp,
B.Kobe,
and
P.Poumbourios
(2000).
Functional implications of the human T-lymphotropic virus type 1 transmembrane glycoprotein helical hairpin structure.
|
| |
J Virol,
74,
6614-6621.
|
 |
|
|
|
|
 |
C.Kozerski,
E.Ponimaskin,
B.Schroth-Diez,
M.F.Schmidt,
and
A.Herrmann
(2000).
Modification of the cytoplasmic domain of influenza virus hemagglutinin affects enlargement of the fusion pore.
|
| |
J Virol,
74,
7529-7537.
|
 |
|
|
|
|
 |
E.Leikina,
I.Markovic,
L.V.Chernomordik,
and
M.M.Kozlov
(2000).
Delay of influenza hemagglutinin refolding into a fusion-competent conformation by receptor binding: a hypothesis.
|
| |
Biophys J,
79,
1415-1427.
|
 |
|
|
|
|
 |
E.Leikina,
and
L.V.Chernomordik
(2000).
Reversible merger of membranes at the early stage of influenza hemagglutinin-mediated fusion.
|
| |
Mol Biol Cell,
11,
2359-2371.
|
 |
|
|
|
|
 |
G.B.Melikyan,
R.M.Markosyan,
H.Hemmati,
M.K.Delmedico,
D.M.Lambert,
and
F.S.Cohen
(2000).
Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion.
|
| |
J Cell Biol,
151,
413-423.
|
 |
|
|
|
|
 |
G.B.Melikyan,
R.M.Markosyan,
M.G.Roth,
and
F.S.Cohen
(2000).
A point mutation in the transmembrane domain of the hemagglutinin of influenza virus stabilizes a hemifusion intermediate that can transit to fusion.
|
| |
Mol Biol Cell,
11,
3765-3775.
|
 |
|
|
|
|
 |
J.Bentz
(2000).
Membrane fusion mediated by coiled coils: a hypothesis.
|
| |
Biophys J,
78,
886-900.
|
 |
|
|
|
|
 |
J.J.Skehel,
and
D.C.Wiley
(2000).
Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin.
|
| |
Annu Rev Biochem,
69,
531-569.
|
 |
|
|
|
|
 |
J.M.Matthews,
T.F.Young,
S.P.Tucker,
and
J.P.Mackay
(2000).
The core of the respiratory syncytial virus fusion protein is a trimeric coiled coil.
|
| |
J Virol,
74,
5911-5920.
|
 |
|
|
|
|
 |
R.T.Armstrong,
A.S.Kushnir,
and
J.M.White
(2000).
The transmembrane domain of influenza hemagglutinin exhibits a stringent length requirement to support the hemifusion to fusion transition.
|
| |
J Cell Biol,
151,
425-437.
|
 |
|
|
|
|
 |
R.W.Doms,
and
J.P.Moore
(2000).
HIV-1 membrane fusion: targets of opportunity.
|
| |
J Cell Biol,
151,
F9-14.
|
 |
|
|
|
|
 |
V.A.Frolov,
M.S.Cho,
P.Bronk,
T.S.Reese,
and
J.Zimmerberg
(2000).
Multiple local contact sites are induced by GPI-linked influenza hemagglutinin during hemifusion and flickering pore formation.
|
| |
Traffic,
1,
622-630.
|
 |
|
|
|
|
 |
X.Zhao,
M.Singh,
V.N.Malashkevich,
and
P.S.Kim
(2000).
Structural characterization of the human respiratory syncytial virus fusion protein core.
|
| |
Proc Natl Acad Sci U S A,
97,
14172-14177.
|
 |
|
PDB code:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |
|