spacer
spacer

PDBsum entry 1n4h

Go to PDB code: 
protein ligands links
Hormone/growth factor PDB id
1n4h

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
244 a.a. *
Ligands
HIS-LYS-ILE-LEU-
HIS-ARG-LEU-LEU-
GLN-GLU
REA
Waters ×113
* Residue conservation analysis
PDB id:
1n4h
Name: Hormone/growth factor
Title: Characterization of ligands for the orphan nuclear receptor rorbeta
Structure: Nuclear receptor ror-beta. Chain: a. Fragment: ligand-binding domain. Synonym: nuclear receptor rzr-beta. Engineered: yes. Steroid receptor coactivator-1. Chain: b. Fragment: nr-2 box. Engineered: yes
Source: Rattus norvegicus. Norway rat. Organism_taxid: 10116. Gene: rzr-beta. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Expression_system_tissue: brain. Synthetic: yes. Other_details: the peptide was chemically synthesized. The sequence
Biol. unit: Dimer (from PQS)
Resolution:
2.10Å     R-factor:   0.217     R-free:   0.255
Authors: C.Stehlin-Gaon,D.Willmann,S.Sanglier,A.Van Dorsselaer,J.-P.Renaud, D.Moras,R.Schuele
Key ref:
C.Stehlin-Gaon et al. (2003). All-trans retinoic acid is a ligand for the orphan nuclear receptor ROR beta. Nat Struct Biol, 10, 820-825. PubMed id: 12958591 DOI: 10.1038/nsb979
Date:
31-Oct-02     Release date:   23-Sep-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P45446  (RORB_RAT) -  Nuclear receptor ROR-beta from Rattus norvegicus
Seq:
Struc:
470 a.a.
244 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1038/nsb979 Nat Struct Biol 10:820-825 (2003)
PubMed id: 12958591  
 
 
All-trans retinoic acid is a ligand for the orphan nuclear receptor ROR beta.
C.Stehlin-Gaon, D.Willmann, D.Zeyer, S.Sanglier, A.Van Dorsselaer, J.P.Renaud, D.Moras, R.Schüle.
 
  ABSTRACT  
 
Retinoids regulate gene expression through binding to the nuclear retinoic acid receptors (RARs) and retinoid X receptors (RXRs). In contrast, no ligands for the retinoic acid receptor-related orphan receptors beta and gamma (ROR beta and gamma) have been identified, yet structural data and structure-function analyses indicate that ROR beta is a ligand-regulated nuclear receptor. Using nondenaturing mass spectrometry and scintillation proximity assays we found that all-trans retinoic acid (ATRA) and several retinoids bind to the ROR beta ligand-binding domain (LBD). The crystal structures of the complex with ATRA and with the synthetic analog ALRT 1550 reveal the binding modes of these ligands. ATRA and related retinoids inhibit ROR beta but not ROR alpha transcriptional activity suggesting that high-affinity, subtype-specific ligands could be designed for the identification of ROR beta target genes. Our results identify ROR beta as a retinoid-regulated nuclear receptor, providing a novel pathway for retinoid action.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Nondenaturing ESI-MS analysis of ligand binding to ROR . (a) ROR -stearate complex (ROR -STE): before addition of any ligand, 90% of the detected species correspond to the ROR -STE complex and 10% are related to unliganded ROR . (b) ROR -ATRA complex: after addition of 2.5 molar equivalents of ATRA (molecular mass = 300.4 Da), the only detected species corresponds to the ROR -ATRA complex. Neither unliganded ROR nor the ROR -STE complex is present in the ESI mass spectrum. (c) ROR -ALRT 1550 complex (ROR -ALRT): after addition of 2.5 molar equivalents of ALRT (molecular mass = 340.5 Da), the only detected species corresponds to the ROR -ALRT complex. Neither unliganded ROR nor the ROR -STE complex is present in the ESI mass spectrum. The ESI-MS measured masses for the different complexes are: 31,034.5 0.5 Da for ROR , 31,321.4 0.9 Da for ROR -STE, 31,334.6 1.3 Da for ROR -ATRA and 31,373.9 0.8 Da for ROR -ALRT. Asterisk represents ROR without the His[6]-tag; G, gluconoylation of the His[6]-tag; PG, phosphogluconoylation of the His[6]-tag28.
Figure 2.
Figure 2. Crystal structures of the ROR LBD in complex with ATRA and ALRT. (a) Stereo view of the backbone superposition of the structures of the ROR LBD (yellow) in complex with stearate (orange) and the SRC-1 peptide (red) (PDB entry 1K4W) and of the ROR LBD (green) in complex with ATRA (dark blue) and the SRC-1 peptide. (b) Electron density omit maps of the bound ligands. The maps were calculated at 2.1 Å for ATRA (left) and 1.5 Å for ALRT (right). Contour levels are 2.0 and 2.5 , respectively; labels refer to the canonical helix numbering. (c) Anchoring of the carboxylate of ATRA in two different LBDs. Left, ATRA (yellow) and stearate (orange) in ROR ; the superposition was made on the protein atoms. Right, ATRA in hRAR (PDB entry 2LBD). In ROR , ATRA forms two water mediated hydrogen bonds to Arg306 and Arg309 whereas in RAR it forms one direct hydrogen bond to Arg278. (d) Stereo view of the superposition of stearate (orange), ATRA (yellow) and ALRT (green) in the ROR ligand-binding pocket. The protein atoms follow the standard color code.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2003, 10, 820-825) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21050030 J.Wilkinson, T.Hallis, S.Hermanson, and K.Bi (2011).
Development and validation of a cell-based assay for the nuclear receptor retinoid-related orphan receptor gamma.
  Assay Drug Dev Technol, 9, 125-135.  
20706998 G.S.Lee, X.Liao, H.Shimizu, and M.D.Collins (2010).
Genetic and pathologic aspects of retinoic acid-induced limb malformations in the mouse.
  Birth Defects Res A Clin Mol Teratol, 88, 863-882.  
20463469 L.A.Solt, P.R.Griffin, and T.P.Burris (2010).
Ligand regulation of retinoic acid receptor-related orphan receptors: implications for development of novel therapeutics.
  Curr Opin Lipidol, 21, 204-211.  
20723571 L.Jin, and Y.Li (2010).
Structural and functional insights into nuclear receptor signaling.
  Adv Drug Deliv Rev, 62, 1218-1226.  
20659512 L.Xiao, X.Xie, and Y.Zhai (2010).
Functional crosstalk of CAR-LXR and ROR-LXR in drug metabolism and lipid metabolism.
  Adv Drug Deliv Rev, 62, 1316-1321.  
20140749 M.Theodosiou, V.Laudet, and M.Schubert (2010).
From carrot to clinic: an overview of the retinoic acid signaling pathway.
  Cell Mol Life Sci, 67, 1423-1445.  
20372994 S.Mukherjee, and S.Mani (2010).
Orphan nuclear receptors as targets for drug development.
  Pharm Res, 27, 1439-1468.  
  19381306 A.M.Jetten (2009).
Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism.
  Nucl Recept Signal, 7, e003.  
19164466 Y.Chen, S.Coulter, A.M.Jetten, and J.A.Goldstein (2009).
Identification of human CYP2C8 as a retinoid-related orphan nuclear receptor target gene.
  J Pharmacol Exp Ther, 329, 192-201.  
17596960 G.M.Waitt, R.Xu, G.B.Wisely, and J.D.Williams (2008).
Automated in-line gel filtration for native state mass spectrometry.
  J Am Soc Mass Spectrom, 19, 239-245.  
18535165 T.Wada, H.S.Kang, A.M.Jetten, and W.Xie (2008).
The emerging role of nuclear receptor RORalpha and its crosstalk with LXR in xeno- and endobiotic gene regulation.
  Exp Biol Med (Maywood), 233, 1191-1201.  
17400923 C.Bovet, A.Wortmann, S.Eiler, F.Granger, M.Ruff, B.Gerrits, D.Moras, and R.Zenobi (2007).
Estrogen receptor-ligand complexes measured by chip-based nanoelectrospray mass spectrometry: an approach for the screening of endocrine disruptors.
  Protein Sci, 16, 938-946.  
17235672 G.A.LeBlanc (2007).
Crustacean endocrine toxicology: a review.
  Ecotoxicology, 16, 61-81.  
17906642 L.Altucci, M.D.Leibowitz, K.M.Ogilvie, A.R.de Lera, and H.Gronemeyer (2007).
RAR and RXR modulation in cancer and metabolic disease.
  Nat Rev Drug Discov, 6, 793-810.  
17374568 M.V.Flores, C.Hall, A.Jury, K.Crosier, and P.Crosier (2007).
The zebrafish retinoid-related orphan receptor (ror) gene family.
  Gene Expr Patterns, 7, 535-543.  
17532527 Y.Shi (2007).
Orphan nuclear receptors in drug discovery.
  Drug Discov Today, 12, 440-445.  
17001090 A.Geerlof, J.Brown, B.Coutard, M.P.Egloff, F.J.Enguita, M.J.Fogg, R.J.Gilbert, M.R.Groves, A.Haouz, J.E.Nettleship, P.Nordlund, R.J.Owens, M.Ruff, S.Sainsbury, D.I.Svergun, and M.Wilmanns (2006).
The impact of protein characterization in structural proteomics.
  Acta Crystallogr D Biol Crystallogr, 62, 1125-1136.  
18418469 A.M.Jetten, and J.H.Joo (2006).
Retinoid-related Orphan Receptors (RORs): Roles in Cellular Differentiation and Development.
  Adv Dev Biol, 16, 313-355.  
17064257 G.Jones, D.Jones, P.Teal, A.Sapa, and M.Wozniak (2006).
The retinoid-X receptor ortholog, ultraspiracle, binds with nanomolar affinity to an endogenous morphogenetic ligand.
  FEBS J, 273, 4983-4996.  
16741567 S.N.Ramakrishnan, and G.E.Muscat (2006).
The orphan Rev-erb nuclear receptors: a link between metabolism, circadian rhythm and inflammation?
  Nucl Recept Signal, 4, e009.  
16963646 T.Kilic, S.Sanglier, A.Van Dorsselaer, and D.Suck (2006).
Oligomerization behavior of the archaeal Sm2-type protein from Archaeoglobus fulgidus.
  Protein Sci, 15, 2310-2317.  
15888456 F.Molnár, M.Matilainen, and C.Carlberg (2005).
Structural determinants of the agonist-independent association of human peroxisome proliferator-activated receptors with coactivators.
  J Biol Chem, 280, 26543-26556.  
16258897 J.Lengqvist, A.Mata de Urquiza, T.Perlmann, J.Sjövall, and W.J.Griffiths (2005).
Specificity of receptor-ligand interactions and their effect on dimerisation as observed by electrospray mass spectrometry: bile acids form stable adducts to the RXRalpha.
  J Mass Spectrom, 40, 1448-1461.  
15803199 K.King-Jones, and C.S.Thummel (2005).
Nuclear receptors--a perspective from Drosophila.
  Nat Rev Genet, 6, 311-323.  
15669100 P.Du, P.Loulakis, Z.Xie, S.P.Simons, and K.F.Geoghegan (2005).
Tandem mass spectrometry of multiply phosphorylated forms of a 'histidine-tag' derived from a recombinant protein kinase expressed in bacteria.
  Rapid Commun Mass Spectrom, 19, 547-551.  
15897460 W.Wang, C.Zhang, A.Marimuthu, H.I.Krupka, M.Tabrizizad, R.Shelloe, U.Mehra, K.Eng, H.Nguyen, C.Settachatgul, B.Powell, M.V.Milburn, and B.L.West (2005).
The crystal structures of human steroidogenic factor-1 and liver receptor homologue-1.
  Proc Natl Acad Sci U S A, 102, 7505-7510.
PDB codes: 1zdt 1zdu
15078980 D.R.Broussard, M.M.Lozano, and J.P.Dudley (2004).
Rorgamma (Rorc) is a common integration site in type B leukemogenic virus-induced T-cell lymphomas.
  J Virol, 78, 4943-4946.  
15246430 G.Benoit, M.Malewicz, and T.Perlmann (2004).
Digging deep into the pockets of orphan nuclear receptors: insights from structural studies.
  Trends Cell Biol, 14, 369-376.  
15520817 H.Gronemeyer, J.A.Gustafsson, and V.Laudet (2004).
Principles for modulation of the nuclear receptor superfamily.
  Nat Rev Drug Discov, 3, 950-964.  
14722075 J.Kallen, J.M.Schlaeppi, F.Bitsch, I.Delhon, and B.Fournier (2004).
Crystal structure of the human RORalpha Ligand binding domain in complex with cholesterol sulfate at 2.2 A.
  J Biol Chem, 279, 14033-14038.
PDB code: 1s0x
15569301 Q.Xu, J.Lucio-Cazana, M.Kitamura, X.Ruan, L.G.Fine, and J.T.Norman (2004).
Retinoids in nephrology: promises and pitfalls.
  Kidney Int, 66, 2119-2131.  
15606784 S.Sanglier, W.Bourguet, P.Germain, V.Chavant, D.Moras, H.Gronemeyer, N.Potier, and A.Van Dorsselaer (2004).
Monitoring ligand-mediated nuclear receptor-coregulator interactions by noncovalent mass spectrometry.
  Eur J Biochem, 271, 4958-4967.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer