spacer
spacer

PDBsum entry 1imt

Go to PDB code: 
protein links
Toxin PDB id
1imt

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
80 a.a. *
* Residue conservation analysis
PDB id:
1imt
Name: Toxin
Title: Mamba intestinal toxin 1, nmr, 39 structures
Structure: Intestinal toxin 1. Chain: a. Synonym: mit1
Source: Dendroaspis polylepis polylepis. Black mamba. Organism_taxid: 8620. Strain: polylepis. Secretion: venom
NMR struc: 39 models
Authors: J.Boisbouvier,J.-P.Albrand,M.Blackledge,M.Jaquinod,H.Schweitz, M.Lazdunski,D.Marion
Key ref:
J.Boisbouvier et al. (1998). A structural homologue of colipase in black mamba venom revealed by NMR floating disulphide bridge analysis. J Mol Biol, 283, 205-219. PubMed id: 9761684 DOI: 10.1006/jmbi.1998.2057
Date:
14-Apr-98     Release date:   20-Apr-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P25687  (MIT1_DENPO) -  Toxin MIT1 from Dendroaspis polylepis polylepis
Seq:
Struc:
81 a.a.
80 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1006/jmbi.1998.2057 J Mol Biol 283:205-219 (1998)
PubMed id: 9761684  
 
 
A structural homologue of colipase in black mamba venom revealed by NMR floating disulphide bridge analysis.
J.Boisbouvier, J.P.Albrand, M.Blackledge, M.Jaquinod, H.Schweitz, M.Lazdunski, D.Marion.
 
  ABSTRACT  
 
The solution structure of mamba intestinal toxin 1 (MIT1), isolated from Dendroaspis polylepis polylepis venom, has been determined. This molecule is a cysteine-rich polypeptide exhibiting no recognised family membership. Resistance to MIT1 to classical specific endoproteases produced contradictory NMR and biochemical information concerning disulphide-bridge topology. We have used distance restraints allowing ambiguous partners between S atoms in combination with NMR-derived structural information, to correctly determine the disulphide-bridge topology. The resultant solution structure of MIT1, determined to a resolution of 0.5 A, reveals an unexpectedly similar global fold with respect to colipase, a protein involved in fatty acid digestion. Colipase exhibits an analogous resistance to endoprotease activity, indicating for the first time the possible topological origins of this biochemical property. The biochemical and structural homology permitted us to propose a mechanically related digestive function for MIT1 and provides novel information concerning snake venom protein evolution.
 
  Selected figure(s)  
 
Figure 5.
Figure 5. Solution structure of MIT1. (a) Backbone and disulphide-bridge heavy atoms from residues 5 to 80 of the 39 NMR conformers (calculations rMD, Table 1). N, C and C^a atoms from residues 6 to 79 of each structure were superimposed on the average structure atoms. Central core residue backbone atoms (5 to 10, 16 to 21, 29 to 43, 57 to 69 and 75 to 80) are displayed in blue, extremity residue backbone atoms of each finger (11 to 15, 22 to 28, 44 to 56 and 70 to 74) are displayed in red, and disulphide-bridges in yellow. (b) Stereo view of the conformer closest to the mean structure of the 39 conformers shown in (a). The following colours were used for the side-chains: blue, Arg and Lys; red, Glu and Asp; yellow, Ala, Cys, Ile, Leu, Met, Phe, Pro, Trp and Val; grey, Asn, Gln, Ser, Thr and His. Buried side-chains of the inner ionic bridge; Asp10 and Arg54 are displayed with a thicker stick and are labelled. The His46 O atom is labelled.
Figure 9.
Figure 9. Electrostatic potentials map of colipase and MIT1. (a) and (b) The exposed surface of colipase, (c) and (d) were coloured with the electrostatic potential [Gilson et al 1987] by linear interpolation between red (f(r)< -3 kT, negative), white (f(r = 0 kT, neutral) and blue (f(r)>3 kT, positive). (a) and (c) Surfaces were displayed with the same orientation as Figure 5. (b) and (d) Representations were turned by 180° with respect to the vertical axis.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (1998, 283, 205-219) copyright 1998.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20652616 A.Watthanasurorot, K.Söderhäll, P.Jiravanichpaisal, and I.Söderhäll (2011).
An ancient cytokine, astakine, mediates circadian regulation of invertebrate hematopoiesis.
  Cell Mol Life Sci, 68, 315-323.  
20677202 R.A.Morales, N.L.Daly, I.Vetter, M.Mobli, I.A.Napier, D.J.Craik, R.J.Lewis, M.J.Christie, G.F.King, P.F.Alewood, and T.Durek (2010).
Chemical synthesis and structure of the prokineticin Bv8.
  Chembiochem, 11, 1882-1888.
PDB code: 2kra
19640225 B.G.Fry, K.Roelants, D.E.Champagne, H.Scheib, J.D.Tyndall, G.F.King, T.J.Nevalainen, J.A.Norman, R.J.Lewis, R.S.Norton, C.Renjifo, and R.C.de la Vega (2009).
The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms.
  Annu Rev Genomics Hum Genet, 10, 483-511.  
18268320 F.Shojaei, M.Singh, J.D.Thompson, and N.Ferrara (2008).
Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression.
  Proc Natl Acad Sci U S A, 105, 2640-2645.  
18524778 L.Chen, K.Wang, Y.Shao, J.Huang, X.Li, J.Shan, D.Wu, and J.J.Zheng (2008).
Structural insight into the mechanisms of wnt signaling antagonism by dkk.
  J Biol Chem, 283, 23364-23370.
PDB code: 2jtk
17208447 D.Maldonado-Pérez, J.Evans, F.Denison, R.P.Millar, and H.N.Jabbour (2007).
Potential roles of the prokineticins in reproduction.
  Trends Endocrinol Metab, 18, 66-72.  
17881008 L.Negri, R.Lattanzi, E.Giannini, and P.Melchiorri (2007).
Bv8/Prokineticin proteins and their receptors.
  Life Sci, 81, 1103-1116.  
17143291 C.Niehrs (2006).
Function and biological roles of the Dickkopf family of Wnt modulators.
  Oncogene, 25, 7469-7481.  
17200460 Q.Y.Zhou (2006).
The prokineticins: a novel pair of regulatory peptides.
  Mol Interv, 6, 330-338.  
16113687 L.Negri, R.Lattanzi, E.Giannini, M.A.Colucci, G.Mignogna, D.Barra, F.Grohovaz, F.Codazzi, A.Kaiser, G.Kreil, and P.Melchiorri (2005).
Biological activities of Bv8 analogues.
  Br J Pharmacol, 146, 625-632.  
15548611 J.LeCouter, C.Zlot, M.Tejada, F.Peale, and N.Ferrara (2004).
Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization.
  Proc Natl Acad Sci U S A, 101, 16813-16818.  
12728244 A.Kaser, M.Winklmayr, G.Lepperdinger, and G.Kreil (2003).
The AVIT protein family. Secreted cysteine-rich vertebrate proteins with diverse functions.
  EMBO Rep, 4, 469-473.  
12604792 J.LeCouter, R.Lin, M.Tejada, G.Frantz, F.Peale, K.J.Hillan, and N.Ferrara (2003).
The endocrine-gland-derived VEGF homologue Bv8 promotes angiogenesis in the testis: Localization of Bv8 receptors to endothelial cells.
  Proc Natl Acad Sci U S A, 100, 2685-2690.  
11969366 J.LeCouter, and N.Ferrara (2002).
EG-VEGF and the concept of tissue-specific angiogenic growth factors.
  Semin Cell Dev Biol, 13, 3-8.  
11751915 R.Lin, J.LeCouter, J.Kowalski, and N.Ferrara (2002).
Characterization of endocrine gland-derived vascular endothelial growth factor signaling in adrenal cortex capillary endothelial cells.
  J Biol Chem, 277, 8724-8729.  
10570245 H.van Tilbeurgh, S.Bezzine, C.Cambillau, R.Verger, and F.Carrière (1999).
Colipase: structure and interaction with pancreatic lipase.
  Biochim Biophys Acta, 1441, 173-184.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer