PDBe: Searching for biological macromolecular structures

David Armstrong [1]

- Proteins
- Chemical biology
- Structures

- Beginner
- 0.5 hour

The Protein Data Bank in Europe (PDBe) [2] is a free and easily accessible resource for biological macromolecular structures. We collect, organise and disseminate data in both the Protein Data Bank (PDB) and the Electron Microscopy Data Bank (EMDB). This webinar will show you how access the data by searching the PDB and EMDB databases and how to use some of the tools and services that we also provide.

This webinar is for anyone interested in protein or nucleic acid biology who would like to access information about the structure and related function of these macromolecules. This resource does not require an in-depth knowledge of structural biology.

This webinar took place on 13 April 2016. For a full list of upcoming webinars, please look at our Training pages [3].

NB: This video works best using Google Chrome and when viewed in full screen.

Learning objectives:

- Evaluate how to search and navigate the PDBe portal
- Basic understanding of what information is available on a PDBe entry page

Your feedback

Please tell us what you thought about this webinar. Your feedback is invaluable and helps us to improve our courses and thus enhance your learning experience.

Learn more

Find out more

- PDBe Quips [4] (Quite Interesting PDB Structures) are short interactive articles that explore ‘quite interesting’ structures from the PDB archive.

Recommended online courses

- PDBe: Searching the Protein Data Bank [5] - this course will show you how to search and navigate the PDBe resource;
- PDBe: Exploring a Protein Data Bank (PDB) entry [6] - provides a step by step guide on how to explore the
structural information that is present in a particular PDB entry;

- **PDBFold** [7]: Searching for structural homologues of a protein;
- **PDBePISA** [8]: Identifying and interpreting the likely biological assemblies of a protein structure;
- **PDBeChem** [9]: Searching for small molecules and small molecule fragments.

Contributors

[![David Armstrong](https://www.ebi.ac.uk/training/online/trainers/davida_1)](https://www.ebi.ac.uk/training/online/trainers/davida_1)

David Armstrong [1]

EMBL-EBI
Scientific Database Curator - Kleywegt team: Protein Data Bank in Europe Scientific Database Curator - Velankar team: PDBe content and integration

Source URL: https://www.ebi.ac.uk/training/online/course/pdbe-searching-biological-macromolecular-structure

Links

[1] https://www.ebi.ac.uk/training/online/trainers/davida_1
[2] http://www.ebi.ac.uk/pdbe/
[3] http://www.ebi.ac.uk/training/webinars
[4] http://www.ebi.ac.uk/pdbe/quips
[5] https://www.ebi.ac.uk/training/online/course/pdbe-searching-protein-data-bank
[7] https://www.ebi.ac.uk/training/online/course/pdbefold-searching-structural-homologues-protein
[8] https://www.ebi.ac.uk/training/online/course/pdbepisa-identifying-and-interpreting-likely-biolo
[9] https://www.ebi.ac.uk/training/online/course/pdbechem-searching-small-molecules-and-small-molec