Figure 4 - full size

 

Figure 4.
Figure 4: Model of the role of eEF3 in the fungal elongation cycle. a, The post-state ribosome with a locked E-site tRNA owing to the L1 stalk in the 'in' position and the conformation of the 40S head (Post, locked E). b, Hypothetical initial interaction of eEF3 in the open tandem or intermediate conformation (Post*, locked E). c, Ribosome interaction triggers the ATP-dependent closed tandem formation and high-affinity ribosome binding by eEF3, as observed by cryo-EM (Post*). A conformational switch of the chromodomain stabilizes the L1 stalk in the 'out' position (unlocked E). d, ATP hydrolysis of the closed tandem results in the dissociation of eEF3, E-site opening, and unlocking of the 40S head (Post). Now, eEF1A–GTP–aminoacyl-tRNA can bind and the E-site deacyl-tRNA is released. ATP hydrolysis by eEF3, tRNA release, and A-site loading by eEF1A may take place as a joint event. aatRNA, aminoacyl-tRNA. RSR, ratchet-like subunit rearrangement.

The above figure is reprinted by permission from Macmillan Publishers Ltd: Nature (2006, 443, 663-668) copyright 2006.