Figure 4 - full size

 

Figure 4.
Figure 4. Active site cavity and the binding of AMPCPP, pantoate, and pantoyl adenylate. (A) A stereo view of the active site cavity of subunit A of the complex with both AMPCPP and pantoate. The substrates (both with partial occupancy) are shown as ball-and-stick models. The active site cavity is surrounded by ß2-loop- 2, ß7-loop, ß6-loop- 6, 3[10]5'-loop- 5, and ß3-loop-3[10]3- 3'-loop, and covered by 3[10]7 and the ß-sheet of C-terminal domain. Residues around helix 3' (shown in cyan) are disordered in subunit B, which has a fully occupied AMPCPP and a glycerol molecule in the active site. (B) A section of the initial difference electron density map (Fo - Fc) in the active site of subunit B superimposed on the refined model, calculated at 1.7 Å and contoured at the 2 level. Side chains of Lys160, Ser196, and Arg198 have moved relative to those in the apo enzyme to interact with the phosphate groups, and thus also have positive initial difference electron density. The electron density figures are prepared with PYMOL (DeLano 2002). (C) Detailed binding interactions between AMPCPP (shown with carbon atoms in gold) and protein active site residues of subunit B. The Mg2+ ion is shown as a yellow sphere, and water molecules are shown as red spheres. Hydrogen bonds between AMPCPP and protein atoms, and some water-mediated hydrogen bonds are shown as dashed lines. A glycerol molecule found next to the -phosphate of AMPCPP, at the pantoate binding site, is also shown. (D) A section of the initial difference electron density (Fo - Fc) around the bound pantoate molecule in the active site of subunit A of the pantoate-ß-alanine complex (data set 7) shows that pantoate is very well ordered with full occupancy. The nearby residues did not move relative to those of the apo enzyme, and therefore did not have initial difference density. The electron density was calculated at 1.7 Å and contoured at 2 . (E) The pantoate molecule (shown in gold for the carbon atoms) is tightly bound and fits snugly in its binding site. Two glutamine side chains form hydrogen bonds to the hydroxyl groups and one carboxyl oxygen of the pantoate. The two methyl groups and the hydrophobic side of pantoate interact with the side chains of Pro38, Met40, and Phe157. (F) A section of the initial difference electron density (Fo - Fc) around the bound pantoyl adenylate molecule in the active site of subunit B of the intermediate complex (data set 6) shows that intermediate is very well ordered with full occupancy. The electron density was calculated at 1.7 Å and contoured at 2 . (G) The pantoyl adenylate molecule (shown with carbon atoms in gold) is tightly bound and fits snugly in the active site cavity. The adenosine and pantoyl groups are at identical positions as those in the AMPCPP complex and pantoate complex, respectively, and have identical interactions with the active site residues. However, the -phosphate moved down to have a covalent bond to the pantoate, which allows the phosphate group to have a hydrogen bond to the amide nitrogen of Met40.

The above figure is reprinted by permission from the Protein Society: Protein Sci (2003, 12, 1097-1108) copyright 2003.