Figure 3 - full size

 

Figure 3.
Figure 3: Structure of the Cbl-N / ZAP-70 pY292 complex. a, Stereo diagram showing an -carbon trace of the complex. The bound ZAP-70 phosphopeptide is shown in magenta. b, Stereo diagram showing the interactions with the ZAP-70 phosphopeptide. The bound peptide is shown in white. Red spheres represent ordered water molecules that bridge Cbl-N and the bound peptide. Thin blue lines represent hydrogen bonds. In the phosphotyrosine pocket, Tyr 274 in Cbl makes an 'edge-face' interaction with the phosphotyrosine ring, and its hydroxyl group hydrogen-bonds to the carbonyl oxygen of Gly 291 in the ZAP-70 peptide. An arginine residue found in this position in most SH2 domains makes an 'amino–aromatic' interaction with the phosphotyrosine ring and also hydrogen-bonds with the carbonyl of the pY-1 residue of the bound peptide^8. C-terminal to the phosphotyrosine, the proline at position pY+4 in the ZAP-70 peptide binds in a hydrophobic cleft formed by Tyr 307, Phe 336 and Tyr 337, and the glutamic acid residue at pY+3 hydrogen-bonds with the backbone amide of His 320. c, Superposition of the liganded (yellow) and unliganded (blue) Cbl-N structures reveals a shift in the position of the SH2 domain upon phosphopeptide binding. The conformation of the 4H and EF-hand domains is essentially identical in the two structures. In the absence of phosphopeptide, the SH2 domain makes little contact with the 4H domain and its position is likely to vary, as we observe slightly different conformations among the three molecules in the asymmetric unit. Phosphopeptide binding induces a domain 'closure', in which the SH2 domain rotates to pack against the helical domain, completing the phosphotyrosine-binding pocket, as in d. d, Molecular surface representation of the Cbl-N domain, coloured by domain. The 4H domain (yellow) forms a portion of the phosphotyrosine-binding pocket. Residues 289–297 of the bound ZAP-70 phosphopeptide are shown as a stick model. The three N-terminal residues in the peptide are disordered and are not included. In the liganded structure, about 1, 200 Å^2 of the SH2 domain is buried as a result of interaction with the other two domains; 500 Å^2 is buried in the interface with the 4H domain, and 700 Å^2 is buried in the interface with the EF hand. The 4H and EF-hand domains share a solvent-excluding interface of 800 Å^2.

The above figure is reprinted by permission from Macmillan Publishers Ltd: Nature (1999, 398, 84-90) copyright 1999.