Figure 2 - full size

 

Figure 2.
Fig. 2. Structural similarities between human topo I and HP1 integrase. (A) The sequence and secondary structural elements of reconstituted human topo I are indicated in the standard coloring scheme of the domain architecture of the enzyme (Fig. 1A), and^ the structurally similar regions of HP1 integrase are shown in red with gray background. Catalytically relevant residues of human topo I are highlighted in cyan, and the positions of known CPT-resistant mutations in human, hamster, and yeast topoisomerases I are shown in gray. -Helices 18 and 19 are not depicted because these correspond^ to the linker domain (20), which is not present in the reconstituted^ enzyme. (B) Stereoview of the superposition of core subdomain III (red) and the COOH-terminal domain (green) of human topo I and bacteriophage HP1 integrase (gray) (38). The active-site^ residues of each enzyme are shown, with the human topo I residues in cyan and the integrase residues in gray. Helices 8, 10, 15, and 17 of core subdomain III of topo I are also indicated. There^ is no structural equivalent in the integrase for the topo I COOH-terminal domain past the first eight residues, which contain the catalytic^ Tyr723. The C positions of the active-site residues Arg488 and Arg590 of topo I (20) superimpose within 0.6 and 1.9 Å, respectively, of the C positions of Arg207 and Arg283 in the integrase. His306 of the integrase superimposes within 3.3 Å on His632 of human topo I, but the putative catalytic His280 of the integrase superimposes on a noncatalytic residue of human topo I, Lys587. Abbreviations for the amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.

The above figure is reprinted by permission from the AAAs: Science (1998, 279, 1504-1513) copyright 1998.