Abstract for PubMed entry 18289105
Title High yield expression of human BACE constructs in Eschericia coli for refolding, purification, and high resolution diffracting crystal forms.
Authors A.G.Tomasselli, D.J.Paddock, T.L.Emmons, A.M.Mildner, J.W.Leone, J.M.Lull, J.I.Cialdella, D.B.Prince, H.D.Fischer, R.L.Heinrikson, T.E.Benson.
Ref. Protein Pept Lett, 2008, 15, 131-143.
PubMed id 18289105
Abstract
BACE (beta-site APP cleaving enzyme) or beta-secretase, the enzyme responsible for processing APP to give the N-terminal portion of the Abeta peptide, is a membrane bound aspartyl protease consisting of an ectodomain catalytic unit, a C-terminal transmembrane segment and a cytoplasmic domain. Three BACE constructs, pET11a-BACE, pQE80L-BACE, and pQE70-BACE were designed to terminate at a position just before the transmembrane domain (Ser(432)) and are described schematically below. (1) pET11a-T7.Tag-G-S-M-(A-8GV......QTDES(432)), (2) pQE80L-Met-R-G-S-(His)(6)-G-S-I-E-T-D-(T(1)QH...QTDES(432)), and (3) pQE70-Met-BACE (R(36)GSFVEMG....PQTDES(432) (His) (6)) Each construct was over-expressed in Escherichia coli as inclusion bodies. The inclusion body proteins were solubilized in urea and refolded by dilution in water to yield active enzyme. Maximal activity for pET11a-BACE and pQE80L-BACE was usually reached at day 3 to 4, while construct pQE70-BACE required about 21 days. Active BACE was purified to homogeneity by anion-exchange chromatography and affinity chromatography over a column of immobilized peptide inhibitor. The process, easily scalable to 60 liters of cell culture, yielded in excess of 400 mg of active enzyme for crystallographic analysis. Highly purified pET11a-BACE and pQE70-BACE formed complexes with various inhibitors, the latter protein giving crystals diffracting up to 1.45 A resolution. In addition, a crystal form that does not require the presence of an inhibitor has been obtained for pQE70-BACE. This ligand-free crystal form has proven useful for the preparation of BACE-inhibitor complexes in soaking experiments.