spacer
spacer

PDBsum entry 7cxy

Go to PDB code: 
Top Page protein metals Protein-protein interface(s) links
Lyase PDB id
7cxy
Contents
Protein chains
214 a.a.
Metals
_ZN ×2
Waters ×136

References listed in PDB file
Key reference
Title Structural insights into novel mechanisms of inhibition of the major β-Carbonic anhydrase cafb from the pathogenic fungus aspergillus fumigatus.
Authors S.Kim, J.Yeon, J.Sung, N.J.Kim, S.Hong, M.S.Jin.
Ref. J Struct Biol, 2021, 213, 107700. [DOI no: 10.1016/j.jsb.2021.107700]
PubMed id 33545350
Abstract
In fungi the β-class of carbonic anhydrases (β-CAs) are zinc metalloenzymes that are essential for growth, survival, differentiation, and virulence. Aspergillus fumigatus is the most important pathogen responsible for invasive aspergillosis and possesses two major β-CAs, CafA and CafB. Recently we reported the biochemical characterization and 1.8 Å crystal structure of CafA. Here, we report a crystallographic analysis of CafB revealing the mechanism of enzyme catalysis and establish the relationship of this enzyme to other β-CAs. While CafA has a typical open conformation, CafB, when exposed to acidic pH and/or an oxidative environment, has a novel type of active site in which a disulfide bond is formed between two zinc-ligating cysteines, expelling the zinc ion and stabilizing the inactive form of the enzyme. Based on the structural data, we generated an oxidation-resistant mutant (Y159A) of CafB. The crystal structure of the mutant under reducing conditions retains a catalytic zinc at the expected position, tetrahedrally coordinated by three residues (C57, H113 and C116) and an aspartic acid (D59), and replacing the zinc-bound water molecule in the closed form. Furthermore, the active site of CafB crystals grown under zinc-limiting conditions has a novel conformation in which the solvent-exposed catalytic cysteine (C116) is flipped out of the metal coordination sphere, facilitating release of the zinc ion. Taken together, our results suggest that A. fumigatus use sophisticated activity-inhibiting strategies to enhance its survival during infection.
PROCHECK
Go to PROCHECK summary
 Headers

 

spacer

spacer