spacer
spacer

PDBsum entry 6v9s

Go to PDB code: 
protein ligands links
Signaling protein PDB id
6v9s

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
503 a.a.
Ligands
JHC
CLR
OLA
PDB id:
6v9s
Name: Signaling protein
Title: Structure-based development of subtype-selective orexin 1 receptor antagonists
Structure: Orexin receptor type 1,glga glycogen synthase chimera. Chain: a. Synonym: ox1r,hypocretin receptor type 1,glycogen synthase. Engineered: yes
Source: Homo sapiens, pyrococcus abyssi (strain ge5 / orsay). Human. Organism_taxid: 9606, 272844. Strain: ge5 / orsay. Gene: hcrtr1, pab2292. Expressed in: spodoptera frugiperda. Expression_system_taxid: 7108
Resolution:
3.50Å     R-factor:   0.242     R-free:   0.273
Authors: J.Hellmann,M.Drabek,J.Yin,H.Huebner,F.Kraus,T.Proell,D.Weikert, P.Kolb,D.M.Rosenbaum,P.Gmeiner
Key ref: J.Hellmann et al. (2020). Structure-based development of a subtype-selective orexin 1 receptor antagonist. Proc Natl Acad Sci U S A, 117, 18059-18067. PubMed id: 32669442 DOI: 10.1073/pnas.2002704117
Date:
16-Dec-19     Release date:   15-Jul-20    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
O43613  (OX1R_HUMAN) -  Orexin/Hypocretin receptor type 1 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
425 a.a.
503 a.a.*
Protein chain
Pfam   ArchSchema ?
Q9V2J8  (Q9V2J8_PYRAB) -  Glycogen synthase from Pyrococcus abyssi (strain GE5 / Orsay)
Seq:
Struc:
437 a.a.
503 a.a.*
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 401 residue positions (black crosses)

 

 
DOI no: 10.1073/pnas.2002704117 Proc Natl Acad Sci U S A 117:18059-18067 (2020)
PubMed id: 32669442  
 
 
Structure-based development of a subtype-selective orexin 1 receptor antagonist.
J.Hellmann, M.Drabek, J.Yin, J.Gunera, T.Pröll, F.Kraus, C.J.Langmead, H.Hübner, D.Weikert, P.Kolb, D.M.Rosenbaum, P.Gmeiner.
 
  ABSTRACT  
 
Orexins are neuropeptides that activate the rhodopsin-like G protein-coupled receptors OX1R and OX2R. The orexin system plays an important role in the regulation of the sleep-wake cycle and the regulation of feeding and emotions. The nonselective orexin receptor antagonist suvorexant has been the first drug on the market targeting the orexin system and is prescribed for the treatment of insomnia. Subtype-selective OX1R antagonists are valuable tools to further investigate the functions and physiological role of the OX1R in vivo and promising lead compounds for the treatment of drug addiction, anxiety, pain or obesity. Starting from the OX1R and OX2R crystal structures bound to suvorexant, we exploited a single amino acid difference in the orthosteric binding site by using molecular docking and structure-based drug design to optimize ligand interactions with the OX1R while introducing repulsive interactions with the OX2R. A newly established enantiospecific synthesis provided ligands showing up to 75-fold selectivity for the OX1R over the OX2R subtype. The structure of a new OX1R antagonist with subnanomolar affinity (JH112) was determined by crystallography in complex with the OX1R and corresponded closely to the docking-predicted geometry. JH112 exhibits high selectivity over a panel of different GPCRs, is able to cross the blood-brain barrier and acts as slowly diffusing and insurmountable antagonist for Gq protein activation and in particular β-arrestin-2 recruitment at OX1R. This study demonstrates the potential of structure-based drug design to develop more subtype-selective GPCR ligands with potentially reduced side effects and provides an attractive probe molecule and lead compound.
 

 

spacer

spacer