spacer
spacer

PDBsum entry 4xod

Go to PDB code: 
protein Protein-protein interface(s) links
Cell adhesion PDB id
4xod

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
13 a.a.
279 a.a.
Waters ×597
PDB id:
4xod
Name: Cell adhesion
Title: Crystal structure of a fimh Dsg complex from e.Coli f18
Structure: Fimg protein. Chain: b. Fragment: unp residues 24-37. Engineered: yes. Fimh protein. Chain: a. Fragment: unp residues 25-303. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Gene: ecp_4654. Expressed in: escherichia coli. Expression_system_taxid: 562. Gene: ecp_4655.
Resolution:
1.14Å     R-factor:   0.143     R-free:   0.159
Authors: R.P.Jakob,M.M.Sauer,R.Glockshuber,T.Maier
Key ref: M.M.Sauer et al. (2016). Catch-bond mechanism of the bacterial adhesin FimH. Nat Commun, 7, 10738. PubMed id: 26948702 DOI: 10.1038/ncomms10738
Date:
16-Jan-15     Release date:   27-Jan-16    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P08190  (FIMG_ECOLI) -  Protein FimG from Escherichia coli (strain K12)
Seq:
Struc:
167 a.a.
13 a.a.
Protein chain
Pfam   ArchSchema ?
P08191  (FIMH_ECOLI) -  Type 1 fimbrin D-mannose specific adhesin from Escherichia coli (strain K12)
Seq:
Struc:
300 a.a.
279 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 

 
DOI no: 10.1038/ncomms10738 Nat Commun 7:10738 (2016)
PubMed id: 26948702  
 
 
Catch-bond mechanism of the bacterial adhesin FimH.
M.M.Sauer, R.P.Jakob, J.Eras, S.Baday, D.Eriş, G.Navarra, S.Bernèche, B.Ernst, T.Maier, R.Glockshuber.
 
  ABSTRACT  
 
Ligand-receptor interactions that are reinforced by mechanical stress, so-called catch-bonds, play a major role in cell-cell adhesion. They critically contribute to widespread urinary tract infections by pathogenic Escherichia coli strains. These pathogens attach to host epithelia via the adhesin FimH, a two-domain protein at the tip of type I pili recognizing terminal mannoses on epithelial glycoproteins. Here we establish peptide-complemented FimH as a model system for fimbrial FimH function. We reveal a three-state mechanism of FimH catch-bond formation based on crystal structures of all states, kinetic analysis of ligand interaction and molecular dynamics simulations. In the absence of tensile force, the FimH pilin domain allosterically accelerates spontaneous ligand dissociation from the FimH lectin domain by 100,000-fold, resulting in weak affinity. Separation of the FimH domains under stress abolishes allosteric interplay and increases the affinity of the lectin domain. Cell tracking demonstrates that rapid ligand dissociation from FimH supports motility of piliated E. coli on mannosylated surfaces in the absence of shear force.
 

 

spacer

spacer