 |
PDBsum entry 4bug
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Cell adhesion
|
PDB id
|
|
|
|
4bug
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
References listed in PDB file
|
 |
|
Key reference
|
 |
|
Title
|
 |
Intramolecular isopeptide but not internal thioester bonds confer proteolytic and significant thermal stability to the s. Pyogenes pilus adhesin spy0125.
|
 |
|
Authors
|
 |
M.Walden,
A.Crow,
M.D.Nelson,
M.J.Banfield.
|
 |
|
Ref.
|
 |
Proteins, 2014,
82,
517-527.
[DOI no: ]
|
 |
|
PubMed id
|
 |
|
 |
|
|
 |
 |
|
Abstract
|
 |
|
Streptococcus pyogenes and other Gram-positive bacterial pathogens present long
macromolecular filaments known as pili on their surface that mediate adhesion
and colonization. These pili are covalent polymers, assembled by sortases.
Typically, they comprise a putative adhesin at their tip, a backbone subunit
present in multiple copies and a basal subunit that is covalently anchored to
the peptidoglycan layer of the cell surface. The crystal structures of pilin
subunits revealed the presence of unusual covalent linkages in these proteins,
including intramolecular isopeptide and internal thioester bonds. The
intramolecular isopeptide bonds in backbone pilins are important for protein
stability. Here, using both the wild-type protein and a set of mutants, we
assessed the proteolytic and thermal stability of the S. pyogenes pilus tip
adhesin Spy0125, in the presence and absence of its intramolecular isopeptide
and internal thioester bonds. We also determined a crystal structure of the
internal thioester bond variant Spy0125(Cys426Ala) . We find that mutations in
the intramolecular isopeptide bonds compromise the stability of Spy0125. Using
limited proteolysis and thermal denaturation assays, we could separate the
contribution of each intramolecular isopeptide bond to Spy0125 stability. In
contrast, mutation in the internal thioester bond had a lesser effect on protein
stability and the crystal structure is essentially identical to wild type. This
work suggests that the internal thioester in Spy0125, although having a minor
contributory role, is not required for protein stability and must have a
different primary function, most likely mediating a covalent interaction with
host cell ligands. Proteins 2014; 82:517-527. © 2013 The Authors Proteins:
Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
|
 |
|
|
|
|
 |