spacer
spacer

PDBsum entry 3mat

Go to PDB code: 
protein ligands metals links
Hydrolase/hydrolase inhibitor PDB id
3mat

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
264 a.a. *
Ligands
AHH-ALA-LEU
Metals
_NA
_CO ×2
Waters ×91
* Residue conservation analysis
PDB id:
3mat
Name: Hydrolase/hydrolase inhibitor
Title: E.Coli methionine aminopeptidase transition-state inhibitor complex
Structure: Methionine aminopeptidase. Chain: a. Engineered: yes. Mutation: yes. Bestatin-based inhibitor (3r)-amino-(2s)-hydroxyheptanoyl- l-ala-l-leu-l-val-l-phe-ome. Chain: i. Engineered: yes. Other_details: synthetic
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli. Expression_system_taxid: 562. Expression_system_cell_line: bl21(de3). Synthetic: yes
Resolution:
2.00Å     R-factor:   0.156    
Authors: W.T.Lowther,A.M.Orville,D.T.Madden,S.Lim,D.H.Rich,B.W.Matthews
Key ref:
W.T.Lowther et al. (1999). Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis. Biochemistry, 38, 7678-7688. PubMed id: 10387007 DOI: 10.1021/bi990684r
Date:
29-Mar-99     Release date:   18-Jun-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P0AE18  (MAP1_ECOLI) -  Methionine aminopeptidase from Escherichia coli (strain K12)
Seq:
Struc:
264 a.a.
264 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.3.4.11.18  - methionyl aminopeptidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Release of N-terminal amino acids, preferentially methionine, from peptides and arylamides.
      Cofactor: Cobalt cation

 

 
DOI no: 10.1021/bi990684r Biochemistry 38:7678-7688 (1999)
PubMed id: 10387007  
 
 
Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis.
W.T.Lowther, A.M.Orville, D.T.Madden, S.Lim, D.H.Rich, B.W.Matthews.
 
  ABSTRACT  
 
By improving the expression and purification of Escherichia coli methionine aminopeptidase (eMetAP) and using slightly different crystallization conditions, the resolution of the parent structure was extended from 2.4 to 1.9 A resolution. This has permitted visualization of the coordination geometry and solvent structure of the active-site dinuclear metal center. One solvent molecule (likely a mu-hydroxide) bridges the trigonal bipyramidal (Co1) and octahedral (Co2) cobalt ions. A second solvent (possibly a hydroxide ion) is bound terminally to Co2. A monovalent cation binding site was also identified about 13 A away from the metal center at an interface between the two subdomains of the protein. The first structure of a substrate-like inhibitor, (3R)-amino-(2S)-hydroxyheptanoyl-L-Ala-L-Leu-L-Val-L-Phe-OMe, bound to a methionine aminopeptidase, has also been determined. This inhibitor coordinates the metal center through four interactions as follows: (i) ligation of the N-terminal (3R)-nitrogen to Co2, (ii, iii) bridging coordination of the (2S)-hydroxyl group, and (iv) terminal ligation to Co1 by the keto oxygen of the pseudo-peptide linkage. Inhibitor binding occurs with the displacement of two solvent ligands and the expansion of the coordination sphere of Co1. In addition to the tetradentate, bis-chelate metal coordination, the substrate analogue forms hydrogen bonds with His79 and His178, two conserved residues within the active site of all MetAPs. To evaluate their importance in catalysis His79 and His178 were replaced with alanine. Both substitutions, but especially that of His79, reduce activity. The structure of the His79Ala apoenzyme and the comparison of its electronic absorption spectra with other variants suggest that the loss in activity is not due to a conformational change or a defective metal center. Two different reaction mechanisms are proposed and are compared to those of related enzymes. These results also suggest that inhibitors analogous to that reported here may be useful in preventing angiogenesis in cancer and in the treatment of microbial and fungal infections.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21524572 H.Yuan, S.C.Chai, C.K.Lam, H.Howard Xu, and Q.Z.Ye (2011).
Two methionine aminopeptidases from Acinetobacter baumannii are functional enzymes.
  Bioorg Med Chem Lett, 21, 3395-3398.  
21290034 M.Rouffet, and S.M.Cohen (2011).
Emerging trends in metalloprotein inhibition.
  Dalton Trans, 40, 3445-3454.  
20876137 G.Ofek, F.J.Guenaga, W.R.Schief, J.Skinner, D.Baker, R.Wyatt, and P.D.Kwong (2010).
Elicitation of structure-specific antibodies by epitope scaffolds.
  Proc Natl Acad Sci U S A, 107, 17880-17887.
PDB codes: 3les 3lev 3lex 3ley
19660503 J.J.Alvarado, A.Nemkal, J.M.Sauder, M.Russell, D.E.Akiyoshi, W.Shi, S.C.Almo, and L.M.Weiss (2009).
Structure of a microsporidian methionine aminopeptidase type 2 complexed with fumagillin and TNP-470.
  Mol Biochem Parasitol, 168, 158-167.
PDB codes: 3fm3 3fmq 3fmr
  20130794 J.Jeyakanthan, K.Takada, M.Sawano, K.Ogasahara, H.Mizutani, N.Kunishima, S.Yokoyama, and K.Yutani (2009).
Crystal Structural and Functional Analysis of the Putative Dipeptidase from Pyrococcus horikoshii OT3.
  J Biophys, 2009, 434038.  
19359320 M.Drath, K.Baier, and K.Forchhammer (2009).
An alternative methionine aminopeptidase, MAP-A, is required for nitrogen starvation and high-light acclimation in the cyanobacterium Synechocystis sp. PCC 6803.
  Microbiology, 155, 1427-1439.  
18952013 S.Mitra, B.Bennett, and R.C.Holz (2009).
Mutation of H63 and its catalytic affect on the methionine aminopeptidase from Escherichia coli.
  Biochim Biophys Acta, 1794, 137-143.  
19198897 S.Mitra, G.Sheppard, J.Wang, B.Bennett, and R.C.Holz (2009).
Analyzing the binding of Co(II)-specific inhibitors to the methionyl aminopeptidases from Escherichia coli and Pyrococcus furiosus.
  J Biol Inorg Chem, 14, 573-585.  
18098265 A.Wang, N.Winblade Nairn, R.S.Johnson, D.A.Tirrell, and K.Grabstein (2008).
Processing of N-terminal unnatural amino acids in recombinant human interferon-beta in Escherichia coli.
  Chembiochem, 9, 324-330.  
18669631 S.C.Chai, W.L.Wang, and Q.Z.Ye (2008).
FE(II) Is the Native Cofactor for Escherichia coli Methionine Aminopeptidase.
  J Biol Chem, 283, 26879-26885.  
18855426 S.J.Watterson, S.Mitra, S.I.Swierczek, B.Bennett, and R.C.Holz (2008).
Kinetic and spectroscopic analysis of the catalytic role of H79 in the methionine aminopeptidase from Escherichia coli.
  Biochemistry, 47, 11885-11893.  
19019076 S.Mitra, K.M.Job, L.Meng, B.Bennett, and R.C.Holz (2008).
Analyzing the catalytic role of Asp97 in the methionine aminopeptidase from Escherichia coli.
  FEBS J, 275, 6248-6259.  
17120228 A.G.Evdokimov, M.Pokross, R.L.Walter, M.Mekel, B.L.Barnett, J.Amburgey, W.L.Seibel, S.J.Soper, J.F.Djung, N.Fairweather, C.Diven, V.Rastogi, L.Grinius, C.Klanke, R.Siehnel, T.Twinem, R.Andrews, and A.Curnow (2007).
Serendipitous discovery of novel bacterial methionine aminopeptidase inhibitors.
  Proteins, 66, 538-546.
PDB codes: 2gg0 2gg2 2gg3 2gg5 2gg7 2gg8 2gg9 2ggb 2ggc
18093325 Z.Q.Ma, S.X.Xie, Q.Q.Huang, F.J.Nan, T.D.Hurley, and Q.Z.Ye (2007).
Structural analysis of inhibition of E. coli methionine aminopeptidase: implication of loop adaptability in selective inhibition of bacterial enzymes.
  BMC Struct Biol, 7, 84.
PDB codes: 2q92 2q93 2q94 2q95 2q96
16761197 H.S.Lee, Y.J.Kim, S.S.Bae, J.H.Jeon, J.K.Lim, B.C.Jeong, S.G.Kang, and J.H.Lee (2006).
Cloning, expression, and characterization of a methionyl aminopeptidase from a hyperthermophilic archaeon Thermococcus sp. NA1.
  Mar Biotechnol (NY), 8, 425-432.  
16769889 Q.Z.Ye, S.X.Xie, Z.Q.Ma, M.Huang, and R.P.Hanzlik (2006).
Structural basis of catalysis by monometalated methionine aminopeptidase.
  Proc Natl Acad Sci U S A, 103, 9470-9475.
PDB codes: 2gtx 2gu4 2gu5 2gu6 2gu7
16552144 S.X.Xie, W.J.Huang, Z.Q.Ma, M.Huang, R.P.Hanzlik, and Q.Z.Ye (2006).
Structural analysis of metalloform-selective inhibition of methionine aminopeptidase.
  Acta Crystallogr D Biol Crystallogr, 62, 425-432.
PDB codes: 2evc 2evm 2evo
16149114 C.Drahl, B.F.Cravatt, and E.J.Sorensen (2005).
Protein-reactive natural products.
  Angew Chem Int Ed Engl, 44, 5788-5809.  
16087890 D.Liu, B.W.Lepore, G.A.Petsko, P.W.Thomas, E.M.Stone, W.Fast, and D.Ringe (2005).
Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis.
  Proc Natl Acad Sci U S A, 102, 11882-11887.
PDB code: 2a7m
15547949 J.A.Vetro, B.Dummitt, W.S.Micka, and Y.H.Chang (2005).
Evidence of a dominant negative mutant of yeast methionine aminopeptidase type 2 in Saccharomyces cerevisiae.
  J Cell Biochem, 94, 656-668.  
15909055 L.Vaiana, C.Platas-Iglesias, D.Esteban-Gómez, F.Avecilla, J.M.Clemente-Juan, J.A.Real, A.de Blas, and T.Rodríguez-Blas (2005).
Designing binuclear transition metal complexes: a new example of the versatility of N,N'-bis(2-aminobenzyl)-4,13-diaza-18-crown-6.
  Dalton Trans, (), 2031-2037.  
16314577 M.H.Kim, W.C.Choi, H.O.Kang, J.S.Lee, B.S.Kang, K.J.Kim, Z.S.Derewenda, T.K.Oh, C.H.Lee, and J.K.Lee (2005).
The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-L-homoserine lactone hydrolase.
  Proc Natl Acad Sci U S A, 102, 17606-17611.
PDB codes: 2br6 2btn
15880695 R.Schiffmann, A.Heine, G.Klebe, and C.D.Klein (2005).
Metal ions as cofactors for the binding of inhibitors to methionine aminopeptidase: a critical view of the relevance of in vitro metalloenzyme assays.
  Angew Chem Int Ed Engl, 44, 3620-3623.
PDB code: 1yvm
15578241 V.M.D'souza, R.S.Brown, B.Bennett, and R.C.Holz (2005).
Characterization of the active site and insight into the binding mode of the anti-angiogenesis agent fumagillin to the manganese(II)-loaded methionyl aminopeptidase from Escherichia coli.
  J Biol Inorg Chem, 10, 41-50.  
15211524 G.Spraggon, R.Schwarzenbacher, A.Kreusch, D.McMullan, L.S.Brinen, J.M.Canaves, X.Dai, A.M.Deacon, M.A.Elsliger, S.Eshagi, R.Floyd, A.Godzik, C.Grittini, S.K.Grzechnik, L.Jaroszewski, C.Karlak, H.E.Klock, E.Koesema, J.S.Kovarik, P.Kuhn, T.M.McPhillips, M.D.Miller, A.Morse, K.Moy, J.Ouyang, R.Page, K.Quijano, F.Rezezadeh, A.Robb, E.Sims, R.C.Stevens, H.van den Bedem, J.Velasquez, J.Vincent, F.von Delft, X.Wang, B.West, G.Wolf, Q.Xu, K.O.Hodgson, J.Wooley, S.A.Lesley, and I.A.Wilson (2004).
Crystal structure of a methionine aminopeptidase (TM1478) from Thermotoga maritima at 1.9 A resolution.
  Proteins, 56, 396-400.
PDB code: 1o0x
14976199 J.Y.Li, Y.M.Cui, L.L.Chen, M.Gu, J.Li, F.J.Nan, and Q.Z.Ye (2004).
Mutations at the S1 sites of methionine aminopeptidases from Escherichia coli and Homo sapiens reveal the residues critical for substrate specificity.
  J Biol Chem, 279, 21128-21134.  
15388923 S.C.Graham, M.J.Maher, W.H.Simmons, H.C.Freeman, and J.M.Guss (2004).
Structure of Escherichia coli aminopeptidase P in complex with the inhibitor apstatin.
  Acta Crystallogr D Biol Crystallogr, 60, 1770-1779.
PDB code: 1n51
15583392 V.Reiland, Y.Fundoiano-Hershcovitz, G.Golan, R.Gilboa, Y.Shoham, and G.Shoham (2004).
Preliminary crystallographic characterization of BSAP, an extracellular aminopeptidase from Bacillus subtilis.
  Acta Crystallogr D Biol Crystallogr, 60, 2371-2376.  
15215523 Y.D.Liao, J.C.Jeng, C.F.Wang, S.C.Wang, and S.T.Chang (2004).
Removal of N-terminal methionine from recombinant proteins by engineered E. coli methionine aminopeptidase.
  Protein Sci, 13, 1802-1810.  
14514693 C.D.Klein, R.Schiffmann, G.Folkers, S.Piana, and U.Röthlisberger (2003).
Protonation states of methionine aminopeptidase and their relevance for inhibitor binding and catalytic activity.
  J Biol Chem, 278, 47862-47867.  
14534293 H.Towbin, K.W.Bair, J.A.DeCaprio, M.J.Eck, S.Kim, F.R.Kinder, A.Morollo, D.R.Mueller, P.Schindler, H.K.Song, J.van Oostrum, R.W.Versace, H.Voshol, J.Wood, S.Zabludoff, and P.E.Phillips (2003).
Proteomics-based target identification: bengamides as a new class of methionine aminopeptidase inhibitors.
  J Biol Chem, 278, 52964-52971.
PDB code: 1qzy
12777807 S.C.Graham, M.Lee, H.C.Freeman, and J.M.Guss (2003).
An orthorhombic form of Escherichia coli aminopeptidase P at 2.4 A resolution.
  Acta Crystallogr D Biol Crystallogr, 59, 897-902.
PDB code: 1m35
12405829 B.Bennett, W.E.Antholine, V.M.D'souza, G.Chen, L.Ustinyuk, and R.C.Holz (2002).
Structurally distinct active sites in the copper(II)-substituted aminopeptidases from Aeromonas proteolytica and Escherichia coli.
  J Am Chem Soc, 124, 13025-13034.  
12044150 L.Meng, S.Ruebush, V.M.D'souza, A.J.Copik, S.Tsunasawa, and R.C.Holz (2002).
Overexpression and divalent metal binding properties of the methionyl aminopeptidase from Pyrococcus furiosus.
  Biochemistry, 41, 7199-7208.  
10727764 B.Datta (2000).
MAPs and POEP of the roads from prokaryotic to eukaryotic kingdoms.
  Biochimie, 82, 95.  
11060042 C.Giglione, A.Serero, M.Pierre, B.Boisson, and T.Meinnel (2000).
Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms.
  EMBO J, 19, 5916-5929.  
10736182 V.M.D'souza, B.Bennett, A.J.Copik, and R.C.Holz (2000).
Divalent metal binding properties of the methionyl aminopeptidase from Escherichia coli.
  Biochemistry, 39, 3817-3826.  
10555963 W.T.Lowther, Y.Zhang, P.B.Sampson, J.F.Honek, and B.W.Matthews (1999).
Insights into the mechanism of Escherichia coli methionine aminopeptidase from the structural analysis of reaction products and phosphorus-based transition-state analogues.
  Biochemistry, 38, 14810-14819.
PDB codes: 1c21 1c22 1c23 1c24 1c27
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer