spacer
spacer

PDBsum entry 3gyh

Go to PDB code: 
Top Page protein dna_rna ligands links
DNA binding protein/DNA PDB id
3gyh
Contents
Protein chain
108 a.a.
DNA/RNA
Ligands
PBO
Waters ×2

References listed in PDB file
Key reference
Title Flipping of alkylated DNA damage bridges base and nucleotide excision repair.
Authors J.L.Tubbs, V.Latypov, S.Kanugula, A.Butt, M.Melikishvili, R.Kraehenbuehl, O.Fleck, A.Marriott, A.J.Watson, B.Verbeek, G.Mcgown, M.Thorncroft, M.F.Santibanez-Koref, C.Millington, A.S.Arvai, M.D.Kroeger, L.A.Peterson, D.M.Williams, M.G.Fried, G.P.Margison, A.E.Pegg, J.A.Tainer.
Ref. Nature, 2009, 459, 808-813.
PubMed id 19516334
Abstract
Alkyltransferase-like proteins (ATLs) share functional motifs with the cancer chemotherapy target O(6)-alkylguanine-DNA alkyltransferase (AGT) and paradoxically protect cells from the biological effects of DNA alkylation damage, despite lacking the reactive cysteine and alkyltransferase activity of AGT. Here we determine Schizosaccharomyces pombe ATL structures without and with damaged DNA containing the endogenous lesion O(6)-methylguanine or cigarette-smoke-derived O(6)-4-(3-pyridyl)-4-oxobutylguanine. These results reveal non-enzymatic DNA nucleotide flipping plus increased DNA distortion and binding pocket size compared to AGT. Our analysis of lesion-binding site conservation identifies new ATLs in sea anemone and ancestral archaea, indicating that ATL interactions are ancestral to present-day repair pathways in all domains of life. Genetic connections to mammalian XPG (also known as ERCC5) and ERCC1 in S. pombe homologues Rad13 and Swi10 and biochemical interactions with Escherichia coli UvrA and UvrC combined with structural results reveal that ATLs sculpt alkylated DNA to create a genetic and structural intersection of base damage processing with nucleotide excision repair.
PROCHECK
Go to PROCHECK summary
 Headers

 

spacer

spacer