spacer
spacer

PDBsum entry 3c9l

Go to PDB code: 
protein ligands metals links
Signaling protein PDB id
3c9l

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
329 a.a. *
Ligands
NAG-NAG-BMA ×2
ACE
RET
PLM ×2
PEF
LDA
C8E ×6
Metals
_ZN
Waters ×20
* Residue conservation analysis
PDB id:
3c9l
Name: Signaling protein
Title: Structure of ground-state bovine rhodospin in a hexagonal crystal form
Structure: Rhodopsin. Chain: a
Source: Bos taurus. Bovine
Resolution:
2.65Å     R-factor:   0.190     R-free:   0.216
Authors: R.E.Stenkamp
Key ref: R.E.Stenkamp (2008). Alternative models for two crystal structures of bovine rhodopsin. Acta Crystallogr D Biol Crystallogr, 0, 902-904. PubMed id: 18645239
Date:
16-Feb-08     Release date:   05-Aug-08    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P02699  (OPSD_BOVIN) -  Rhodopsin from Bos taurus
Seq:
Struc:
348 a.a.
329 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
Acta Crystallogr D Biol Crystallogr 0:902-904 (2008)
PubMed id: 18645239  
 
 
Alternative models for two crystal structures of bovine rhodopsin.
R.E.Stenkamp.
 
  ABSTRACT  
 
The space-group symmetry of two crystal forms of rhodopsin (PDB codes 1gzm and 2j4y; space group P3(1)) can be re-interpreted as hexagonal (space group P6(4)). Two molecules of the G protein-coupled receptor are present in the asymmetric unit in the trigonal models. However, the noncrystallographic twofold axes parallel to the c axis can be treated as crystallographic symmetry operations in the hexagonal space group. This halves the asymmetric unit and makes all of the protein molecules equivalent in these structures. Corrections for merohedral twinning were also applied in the refinement in the higher symmetry space group for one of the structures (2j4y).
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
19785456 I.Bahar, T.R.Lezon, A.Bakan, and I.H.Shrivastava (2010).
Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins.
  Chem Rev, 110, 1463-1497.  
20370713 J.Y.Shim (2010).
Understanding functional residues of the cannabinoid CB1.
  Curr Top Med Chem, 10, 779-798.  
19339946 D.T.Lodowski, and K.Palczewski (2009).
Chemokine receptors and other G protein-coupled receptors.
  Curr Opin HIV AIDS, 4, 88-95.  
19192200 D.T.Lodowski, T.E.Angel, and K.Palczewski (2009).
Comparative Analysis of GPCR Crystal Structures.
  Photochem Photobiol, 85, 425-430.  
19627087 J.C.Mobarec, R.Sanchez, and M.Filizola (2009).
Modern homology modeling of G-protein coupled receptors: which structural template to use?
  J Med Chem, 52, 5207-5216.  
20028316 S.Costanzi, J.Siegel, I.G.Tikhonova, and K.A.Jacobson (2009).
Rhodopsin and the others: a historical perspective on structural studies of G protein-coupled receptors.
  Curr Pharm Des, 15, 3994-4002.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time.

 

spacer

spacer