spacer
spacer

PDBsum entry 2uxt

Go to PDB code: 
Top Page protein Protein-protein interface(s) links
Oxidoreductase PDB id
2uxt
Contents
Protein chains
422 a.a.
Waters ×406

References listed in PDB file
Key reference
Title The escherichia coli cell division protein and model tat substrate sufi (ftsp) localizes to the septal ring and has a multicopper oxidase-Like structure.
Authors M.Tarry, S.J.Arends, P.Roversi, E.Piette, F.Sargent, B.C.Berks, D.S.Weiss, S.M.Lea.
Ref. J Mol Biol, 2009, 386, 504-519. [DOI no: 10.1016/j.jmb.2008.12.043]
PubMed id 19135451
Abstract
The Escherichia coli protein SufI (FtsP) has recently been proposed to be a component of the cell division apparatus. The SufI protein is also in widespread experimental use as a model substrate in studies of the Tat (twin arginine translocation) protein transport system. We have used SufI-GFP (green fluorescent protein) fusions to show that SufI localizes to the septal ring in the dividing cell. We have also determined the structure of SufI by X-ray crystallography to a resolution of 1.9 A. SufI is structurally related to the multicopper oxidase superfamily but lacks metal cofactors. The structure of SufI suggests it serves a scaffolding rather than an enzymatic role in the septal ring and reveals regions of the protein likely to be involved in the protein-protein interactions required to assemble SufI at the septal ring.
Figure 4.
Fig. 4. Structure of SufI. (a) Cartoon representation of SufI. The structure shown is for chain A of the orthorhombic space group with domain 1 shown in red, domain 2 in green and domain 3 in blue. Regions of missing density are shown as black dotted lines. The arrow in the region of missing density indicates where the protein is subject to proteolytic cleavage. (b) Stereo view showing CueO (blue) overlaid on the orthorhombic SufI (red) structure. PDB ID 1KV7 was overlaid onto the orthorhombic chain A of SufI with the program CCP4-Lsqkab. The positions of the N- and C-termini of the proteins are shown and the tower region of CueO is labelled for reference. The orientation is as in (a). (c) Stereo view showing representative electron density (2F[o] − F[c]) of orthorhombic chain A, residues 107–131 contoured at 1σ. The positions of the invariant residues leucine 112, arginine 118, tryptophan 126 and proline 128 are labelled.
Figure 7.
Fig. 7. Identification and localization of conserved residues in SufI. (a) CueO: the conserved residues Gly113 and Gly114 (green sticks) sit above the trinuclear copper centre (shown as transparent spheres). Residues Gly117, Arg125 and Val127 (blue sticks) form the brim of a surface cavity that exposes the 112–114 loop (DGG in CueO, conserved as DGX across all multicopper oxidases) to the solvent. (b) SufI: in green, the glycine residues Gly114 and Gly115 corresponding to the glycines in (a); in blue, the residues Arg118, Trp126 and Pro128, which are all highly conserved across SufI sequences and prevent solvent access to the 112–114 loop in the SufI structure. (c) A surface representation of SufI, coloured red (surface residue most conserved) through orange, yellow, and green, to blue (least conserved). The N- and C-termini of the protein are shown for reference and highly conserved surface residues are labelled. A black star marks the location of the residues 118–128 that cover the pocket corresponding to the CueO catalytic centre. The right-hand panel shows a second view of the SufI surface, rotated with respect to the left-hand panel by 180° around the vertical axis.
The above figures are reprinted from an Open Access publication published by Elsevier: J Mol Biol (2009, 386, 504-519) copyright 2009.
PROCHECK
Go to PROCHECK summary
 Headers

 

spacer

spacer