spacer
spacer

PDBsum entry 2k07

Go to PDB code: 
Top Page protein links
Structural genomics, unknown function PDB id
2k07
Contents
Protein chain
175 a.a.

References listed in PDB file
Key reference
Title Nmr and X-Ray structures of human e2-Like ubiquitin-Fold modifier conjugating enzyme 1 (ufc1) reveal structural and functional conservation in the metazoan ufm1-Uba5-Ufc1 ubiquination pathway.
Authors G.Liu, F.Forouhar, A.Eletsky, H.S.Atreya, J.M.Aramini, R.Xiao, Y.J.Huang, M.Abashidze, J.Seetharaman, J.Liu, B.Rost, T.Acton, G.T.Montelione, J.F.Hunt, T.Szyperski.
Ref. J Struct Funct Genomics, 2009, 10, 127-136.
PubMed id 19101823
Abstract
For cell regulation, E2-like ubiquitin-fold modifier conjugating enzyme 1 (Ufc1) is involved in the transfer of ubiquitin-fold modifier 1 (Ufm1), a ubiquitin like protein which is activated by E1-like enzyme Uba5, to various target proteins. Thereby, Ufc1 participates in the very recently discovered Ufm1-Uba5-Ufc1 ubiquination pathway which is found in metazoan organisms. The structure of human Ufc1 was solved by using both NMR spectroscopy and X-ray crystallography. The complementary insights obtained with the two techniques provided a unique basis for understanding the function of Ufc1 at atomic resolution. The Ufc1 structure consists of the catalytic core domain conserved in all E2-like enzymes and an additional N-terminal helix. The active site Cys(116), which forms a thio-ester bond with Ufm1, is located in a flexible loop that is highly solvent accessible. Based on the Ufc1 and Ufm1 NMR structures, a model could be derived for the Ufc1-Ufm1 complex in which the C-terminal Gly(83) of Ufm1 may well form the expected thio-ester with Cys(116), suggesting that Ufm1-Ufc1 functions as described for other E1-E2-E3 machineries. alpha-helix 1 of Ufc1 adopts different conformations in the crystal and in solution, suggesting that this helix plays a key role to mediate specificity.
PROCHECK
Go to PROCHECK summary
 Headers

 

spacer

spacer