 |
PDBsum entry 2aiz
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Membrane protein
|
PDB id
|
|
|
|
2aiz
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Biochemistry
45:2122-2128
(2006)
|
|
PubMed id:
|
|
|
|
|
| |
|
Peptidoglycan recognition by Pal, an outer membrane lipoprotein.
|
|
L.M.Parsons,
F.Lin,
J.Orban.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Peptidoglycan-associated lipoprotein (Pal) is a potential vaccine candidate from
Haemophilus influenzae that is highly conserved in Gram-negative bacteria and
anchored to the outer membrane through an N-terminal lipid attachment. Pal
stabilizes the outer membrane by providing a noncovalent link to the
peptidoglycan (PG) layer through a periplasmic domain. Using NMR spectroscopy,
we determined the three-dimensional structure of a complex between the
periplasmic domain of Pal and a biosynthetic peptidoglycan precursor (PG-P),
UDP-N-acetylmuramyl-L-Ala-alpha-d-Glu-m-Dap-D-Ala-d-Ala (m-Dap is
meso-diaminopimelate). Pal has a binding pocket lined with conserved surface
residues that interacts exclusively with the peptide portion of the ligand. The
m-Dap residue, which is mainly found in the cell walls of Gram-negative
bacteria, is sequestered in this pocket and plays an important role by forming
hydrogen bond and hydrophobic contacts to Pal. The structure provides insight
into the mode of cell wall recognition for a broad class of Gram-negative
membrane proteins, including OmpA and MotB, which have peptidoglycan-binding
domains homologous to that of Pal.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
E.M.Scheurwater,
and
L.L.Burrows
(2011).
Maintaining network security: how macromolecular structures cross the peptidoglycan layer.
|
| |
FEMS Microbiol Lett,
318,
1-9.
|
 |
|
|
|
|
 |
T.Tachikawa,
and
J.Kato
(2011).
Suppression of the temperature-sensitive mutation of the bamD gene required for the assembly of outer membrane proteins by multicopy of the yiaD gene in Escherichia coli.
|
| |
Biosci Biotechnol Biochem,
75,
162-164.
|
 |
|
|
|
|
 |
J.G.Malone,
T.Jaeger,
C.Spangler,
D.Ritz,
A.Spang,
C.Arrieumerlou,
V.Kaever,
R.Landmann,
and
U.Jenal
(2010).
YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa.
|
| |
PLoS Pathog,
6,
e1000804.
|
 |
|
|
|
|
 |
K.Anwari,
S.Poggio,
A.Perry,
X.Gatsos,
S.H.Ramarathinam,
N.A.Williamson,
N.Noinaj,
S.Buchanan,
K.Gabriel,
A.W.Purcell,
C.Jacobs-Wagner,
and
T.Lithgow
(2010).
A modular BAM complex in the outer membrane of the alpha-proteobacterium Caulobacter crescentus.
|
| |
PLoS One,
5,
e8619.
|
 |
|
|
|
|
 |
K.Remans,
K.Vercammen,
J.Bodilis,
and
P.Cornelis
(2010).
Genome-wide analysis and literature-based survey of lipoproteins in Pseudomonas aeruginosa.
|
| |
Microbiology,
156,
2597-2607.
|
 |
|
|
|
|
 |
P.Teriete,
Y.Yao,
A.Kolodzik,
J.Yu,
H.Song,
M.Niederweis,
and
F.M.Marassi
(2010).
Mycobacterium tuberculosis Rv0899 adopts a mixed alpha/beta-structure and does not form a transmembrane beta-barrel.
|
| |
Biochemistry,
49,
2768-2777.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
X.Liu,
M.Afrane,
D.E.Clemmer,
G.Zhong,
and
D.E.Nelson
(2010).
Identification of Chlamydia trachomatis outer membrane complex proteins by differential proteomics.
|
| |
J Bacteriol,
192,
2852-2860.
|
 |
|
|
|
|
 |
B.L.Deatherage,
J.C.Lara,
T.Bergsbaken,
S.L.Rassoulian Barrett,
S.Lara,
and
B.T.Cookson
(2009).
Biogenesis of bacterial membrane vesicles.
|
| |
Mol Microbiol,
72,
1395-1407.
|
 |
|
|
|
|
 |
J.D.Turner,
R.S.Langley,
K.L.Johnston,
K.Gentil,
L.Ford,
B.Wu,
M.Graham,
F.Sharpley,
B.Slatko,
E.Pearlman,
and
M.J.Taylor
(2009).
Wolbachia lipoprotein stimulates innate and adaptive immunity through Toll-like receptors 2 and 6 to induce disease manifestations of filariasis.
|
| |
J Biol Chem,
284,
22364-22378.
|
 |
|
|
|
|
 |
J.Izard,
C.Renken,
C.E.Hsieh,
D.C.Desrosiers,
S.Dunham-Ems,
C.La Vake,
L.L.Gebhardt,
R.J.Limberger,
D.L.Cox,
M.Marko,
and
J.D.Radolf
(2009).
Cryo-electron tomography elucidates the molecular architecture of Treponema pallidum, the syphilis spirochete.
|
| |
J Bacteriol,
191,
7566-7580.
|
 |
|
|
|
|
 |
S.Kojima,
K.Imada,
M.Sakuma,
Y.Sudo,
C.Kojima,
T.Minamino,
M.Homma,
and
K.Namba
(2009).
Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB.
|
| |
Mol Microbiol,
73,
710-718.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Hizukuri,
J.F.Morton,
T.Yakushi,
S.Kojima,
and
M.Homma
(2009).
The peptidoglycan-binding (PGB) domain of the Escherichia coli pal protein can also function as the PGB domain in E. coli flagellar motor protein MotB.
|
| |
J Biochem,
146,
219-229.
|
 |
|
|
|
|
 |
A.Roujeinikova
(2008).
Crystal structure of the cell wall anchor domain of MotB, a stator component of the bacterial flagellar motor: implications for peptidoglycan recognition.
|
| |
Proc Natl Acad Sci U S A,
105,
10348-10353.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Roujeinikova
(2008).
Cloning, purification and preliminary X-ray analysis of the C-terminal domain of Helicobacter pylori MotB.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
64,
277-280.
|
 |
|
|
|
|
 |
A.Typas,
R.J.Nichols,
D.A.Siegele,
M.Shales,
S.R.Collins,
B.Lim,
H.Braberg,
N.Yamamoto,
R.Takeuchi,
B.L.Wanner,
H.Mori,
J.S.Weissman,
N.J.Krogan,
and
C.A.Gross
(2008).
High-throughput, quantitative analyses of genetic interactions in E. coli.
|
| |
Nat Methods,
5,
781-787.
|
 |
|
|
|
|
 |
J.O'Neill,
and
A.Roujeinikova
(2008).
Cloning, purification and crystallization of MotB, a stator component of the proton-driven bacterial flagellar motor.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
64,
561-563.
|
 |
|
|
|
|
 |
M.M.Vanini,
A.Spisni,
M.L.Sforça,
T.A.Pertinhez,
and
C.E.Benedetti
(2008).
The solution structure of the outer membrane lipoprotein OmlA from Xanthomonas axonopodis pv. citri reveals a protein fold implicated in protein-protein interaction.
|
| |
Proteins,
71,
2051-2064.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.C.Ammerman,
M.S.Rahman,
and
A.F.Azad
(2008).
Characterization of Sec-translocon-dependent extracytoplasmic proteins of Rickettsia typhi.
|
| |
J Bacteriol,
190,
6234-6242.
|
 |
|
|
|
|
 |
O.Paliy,
S.M.Gargac,
Y.Cheng,
V.N.Uversky,
and
A.K.Dunker
(2008).
Protein disorder is positively correlated with gene expression in Escherichia coli.
|
| |
J Proteome Res,
7,
2234-2245.
|
 |
|
|
|
|
 |
S.Dramsi,
S.Magnet,
S.Davison,
and
M.Arthur
(2008).
Covalent attachment of proteins to peptidoglycan.
|
| |
FEMS Microbiol Rev,
32,
307-320.
|
 |
|
|
|
|
 |
S.Kojima,
A.Shinohara,
H.Terashima,
T.Yakushi,
M.Sakuma,
M.Homma,
K.Namba,
and
K.Imada
(2008).
Insights into the stator assembly of the Vibrio flagellar motor from the crystal structure of MotY.
|
| |
Proc Natl Acad Sci U S A,
105,
7696-7701.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Kojima,
Y.Furukawa,
H.Matsunami,
T.Minamino,
and
K.Namba
(2008).
Characterization of the periplasmic domain of MotB and implications for its role in the stator assembly of the bacterial flagellar motor.
|
| |
J Bacteriol,
190,
3314-3322.
|
 |
|
|
|
|
 |
T.den Blaauwen,
M.A.de Pedro,
M.Nguyen-Distèche,
and
J.A.Ayala
(2008).
Morphogenesis of rod-shaped sacculi.
|
| |
FEMS Microbiol Rev,
32,
321-344.
|
 |
|
|
|
|
 |
W.A.Kaserer,
X.Jiang,
Q.Xiao,
D.C.Scott,
M.Bauler,
D.Copeland,
S.M.Newton,
and
P.E.Klebba
(2008).
Insight from TonB hybrid proteins into the mechanism of iron transport through the outer membrane.
|
| |
J Bacteriol,
190,
4001-4016.
|
 |
|
|
|
|
 |
C.Akimana,
and
E.R.Lafontaine
(2007).
The Moraxella catarrhalis outer membrane protein CD contains two distinct domains specifying adherence to human lung cells.
|
| |
FEMS Microbiol Lett,
271,
12-19.
|
 |
|
|
|
|
 |
E.Cascales,
S.K.Buchanan,
D.Duché,
C.Kleanthous,
R.Lloubès,
K.Postle,
M.Riley,
S.Slatin,
and
D.Cavard
(2007).
Colicin biology.
|
| |
Microbiol Mol Biol Rev,
71,
158-229.
|
 |
|
|
|
|
 |
M.A.Gerding,
Y.Ogata,
N.D.Pecora,
H.Niki,
and
P.A.de Boer
(2007).
The trans-envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli.
|
| |
Mol Microbiol,
63,
1008-1025.
|
 |
|
|
|
|
 |
A.S.Ghosh,
A.L.Melquist,
and
K.D.Young
(2006).
Loss of O-antigen increases cell shape abnormalities in penicillin-binding protein mutants of Escherichia coli.
|
| |
FEMS Microbiol Lett,
263,
252-257.
|
 |
|
|
|
|
 |
T.F.Murphy,
C.Kirkham,
and
A.J.Lesse
(2006).
Construction of a mutant and characterization of the role of the vaccine antigen P6 in outer membrane integrity of nontypeable Haemophilus influenzae.
|
| |
Infect Immun,
74,
5169-5176.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |