spacer
spacer

PDBsum entry 2aev

Go to PDB code: 
protein ligands links
Unknown function PDB id
2aev

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
366 a.a. *
Ligands
SO4 ×9
Waters ×180
* Residue conservation analysis
PDB id:
2aev
Name: Unknown function
Title: Mj0158, nabh4-reduced form
Structure: Hypothetical protein mj0158. Chain: a. Engineered: yes
Source: Methanocaldococcus jannaschii. Organism_taxid: 2190. Gene: mj0158. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PDB file)
Resolution:
2.00Å     R-factor:   0.225     R-free:   0.271
Authors: J.T.Kaiser,K.Gromadski,M.Rother,H.Engelhardt,M.V.Rodnina,M.C.Wahl
Key ref:
J.T.Kaiser et al. (2005). Structural and functional investigation of a putative archaeal selenocysteine synthase. Biochemistry, 44, 13315-13327. PubMed id: 16201757 DOI: 10.1021/bi051110r
Date:
24-Jul-05     Release date:   04-Oct-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q57622  (Y158_METJA) -  UPF0425 pyridoxal phosphate-dependent protein MJ0158 from Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440)
Seq:
Struc:
374 a.a.
366 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 

 
DOI no: 10.1021/bi051110r Biochemistry 44:13315-13327 (2005)
PubMed id: 16201757  
 
 
Structural and functional investigation of a putative archaeal selenocysteine synthase.
J.T.Kaiser, K.Gromadski, M.Rother, H.Engelhardt, M.V.Rodnina, M.C.Wahl.
 
  ABSTRACT  
 
Bacterial selenocysteine synthase converts seryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec) for selenoprotein biosynthesis. The identity of this enzyme in archaea and eukaryotes is unknown. On the basis of sequence similarity, a conserved open reading frame has been annotated as a selenocysteine synthase gene in archaeal genomes. We have determined the crystal structure of the corresponding protein from Methanococcus jannaschii, MJ0158. The protein was found to be dimeric with a distinctive domain arrangement and an exposed active site, built from residues of the large domain of one protomer alone. The shape of the dimer is reminiscent of a substructure of the decameric Escherichia coli selenocysteine synthase seen in electron microscopic projections. However, biochemical analyses demonstrated that MJ0158 lacked affinity for E. coli seryl-tRNA(Sec) or M. jannaschii seryl-tRNA(Sec), and neither substrate was directly converted to selenocysteinyl-tRNA(Sec) by MJ0158 when supplied with selenophosphate. We then tested a hypothetical M. jannaschii O-phosphoseryl-tRNA(Sec) kinase and demonstrated that the enzyme converts seryl-tRNA(Sec) to O-phosphoseryl-tRNA(Sec) that could constitute an activated intermediate for selenocysteinyl-tRNA(Sec) production. MJ0158 also failed to convert O-phosphoseryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec). In contrast, both archaeal and bacterial seryl-tRNA synthetases were able to charge both archaeal and bacterial tRNA(Sec) with serine, and E. coli selenocysteine synthase converted both types of seryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec). These findings demonstrate that a number of factors from the selenoprotein biosynthesis machineries are cross-reactive between the bacterial and the archaeal systems but that MJ0158 either does not encode a selenocysteine synthase or requires additional factors for activity.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
19903474 J.Yuan, P.O'Donoghue, A.Ambrogelly, S.Gundllapalli, R.Lynn Sherrer, S.Palioura, M.Simonović, and D.Söll (2010).
Distinct genetic code expansion strategies for selenocysteine and pyrrolysine are reflected in different aminoacyl-tRNA formation systems.
  FEBS Lett, 584, 342-349.  
  20847933 M.Rother, and J.A.Krzycki (2010).
Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic archaea.
  Archaea, 2010, 0.  
19919669 T.Stock, M.Selzer, and M.Rother (2010).
In vivo requirement of selenophosphate for selenoprotein synthesis in archaea.
  Mol Microbiol, 75, 149-160.  
18798524 D.Su, M.J.Hohn, S.Palioura, R.L.Sherrer, J.Yuan, D.Söll, and P.O'Donoghue (2009).
How an obscure archaeal gene inspired the discovery of selenocysteine biosynthesis in humans.
  IUBMB Life, 61, 35-39.  
19495416 I.Anderson, L.E.Ulrich, B.Lupa, D.Susanti, I.Porat, S.D.Hooper, A.Lykidis, M.Sieprawska-Lupa, L.Dharmarajan, E.Goltsman, A.Lapidus, E.Saunders, C.Han, M.Land, S.Lucas, B.Mukhopadhyay, W.B.Whitman, C.Woese, J.Bristow, and N.Kyrpides (2009).
Genomic characterization of methanomicrobiales reveals three classes of methanogens.
  PLoS One, 4, e5797.  
18665254 F.J.Sun, and G.Caetano-Anollés (2008).
Evolutionary patterns in the sequence and structure of transfer RNA: a window into early translation and the genetic code.
  PLoS ONE, 3, e2799.  
18604446 J.Yuan, K.Sheppard, and D.Söll (2008).
Amino acid modifications on tRNA.
  Acta Biochim Biophys Sin (Shanghai), 40, 539-553.  
18252769 K.Sheppard, J.Yuan, M.J.Hohn, B.Jester, K.M.Devine, and D.Söll (2008).
From one amino acid to another: tRNA-dependent amino acid biosynthesis.
  Nucleic Acids Res, 36, 1813-1825.  
18241795 K.Sheppard, P.M.Akochy, and D.Söll (2008).
Assays for transfer RNA-dependent amino acid biosynthesis.
  Methods, 44, 139-145.  
18093968 O.M.Ganichkin, X.M.Xu, B.A.Carlson, H.Mix, D.L.Hatfield, V.N.Gladyshev, and M.C.Wahl (2008).
Structure and catalytic mechanism of eukaryotic selenocysteine synthase.
  J Biol Chem, 283, 5849-5865.
PDB codes: 3bc8 3bca 3bcb
18267971 R.L.Sherrer, J.M.Ho, and D.Söll (2008).
Divergence of selenocysteine tRNA recognition by archaeal and eukaryotic O-phosphoseryl-tRNASec kinase.
  Nucleic Acids Res, 36, 1871-1880.  
18174226 R.L.Sherrer, P.O'Donoghue, and D.Söll (2008).
Characterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation.
  Nucleic Acids Res, 36, 1247-1259.  
18158303 Y.Araiso, S.Palioura, R.Ishitani, R.L.Sherrer, P.O'Donoghue, J.Yuan, H.Oshikane, N.Domae, J.Defranco, D.Söll, and O.Nureki (2008).
Structural insights into RNA-dependent eukaryal and archaeal selenocysteine formation.
  Nucleic Acids Res, 36, 1187-1199.
PDB code: 2z67
17173027 A.Ambrogelly, S.Palioura, and D.Söll (2007).
Natural expansion of the genetic code.
  Nat Chem Biol, 3, 29-35.  
17533454 T.Cathopoulis, P.Chuawong, and T.L.Hendrickson (2007).
Novel tRNA aminoacylation mechanisms.
  Mol Biosyst, 3, 408-418.  
17277802 T.L.Hendrickson (2007).
Easing selenocysteine into proteins.
  Nat Struct Mol Biol, 14, 100-101.  
17194211 X.M.Xu, B.A.Carlson, H.Mix, Y.Zhang, K.Saira, R.S.Glass, M.J.Berry, V.N.Gladyshev, and D.L.Hatfield (2007).
Biosynthesis of selenocysteine on its tRNA in eukaryotes.
  PLoS Biol, 5, e4.  
17142313 J.Yuan, S.Palioura, J.C.Salazar, D.Su, P.O'Donoghue, M.J.Hohn, A.M.Cardoso, W.B.Whitman, and D.Söll (2006).
RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea.
  Proc Natl Acad Sci U S A, 103, 18923-18927.  
17054778 Y.Zhang, H.Romero, G.Salinas, and V.N.Gladyshev (2006).
Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues.
  Genome Biol, 7, R94.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer