spacer
spacer

PDBsum entry 1xpq

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Oxidoreductase PDB id
1xpq

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
502 a.a. *
Ligands
SPM ×4
FAD ×4
Waters ×235
* Residue conservation analysis
PDB id:
1xpq
Name: Oxidoreductase
Title: Crystal structure of fms1, a polyamine oxidase from yeast
Structure: Polyamine oxidase fms1. Chain: a, b, c, d. Synonym: fenpropimorph resistance multicopy suppressor 1. Engineered: yes
Source: Saccharomyces cerevisiae. Baker's yeast. Organism_taxid: 4932. Gene: fms1, ymr020w, ym9711.09. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Dimer (from PQS)
Resolution:
2.51Å     R-factor:   0.202     R-free:   0.276
Authors: Q.Huang,Q.Liu,Q.Hao
Key ref:
Q.Huang et al. (2005). Crystal structures of Fms1 and its complex with spermine reveal substrate specificity. J Mol Biol, 348, 951-959. PubMed id: 15843025 DOI: 10.1016/j.jmb.2005.03.008
Date:
09-Oct-04     Release date:   26-Apr-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P50264  (FMS1_YEAST) -  Polyamine oxidase FMS1 from Saccharomyces cerevisiae (strain ATCC 204508 / S288c)
Seq:
Struc:
508 a.a.
502 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.1.5.3.17  - non-specific polyamine oxidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. spermine + O2 + H2O = 3-aminopropanal + spermidine + H2O2
2. spermidine + O2 + H2O = 3-aminopropanal + putrescine + H2O2
3. N1-acetylspermine + O2 + H2O = 3-acetamidopropanal + spermidine + H2O2
4. N1-acetylspermidine + O2 + H2O = 3-acetamidopropanal + putrescine + H2O2
spermine
Bound ligand (Het Group name = SPM)
corresponds exactly
+ O2
+ H2O
= 3-aminopropanal
+ spermidine
+ H2O2
spermidine
Bound ligand (Het Group name = SPM)
matches with 71.43% similarity
+ O2
+ H2O
= 3-aminopropanal
+ putrescine
+ H2O2
N(1)-acetylspermine
+ O2
+ H2O
=
3-acetamidopropanal
Bound ligand (Het Group name = SPM)
matches with 71.43% similarity
+ spermidine
+ H2O2
N(1)-acetylspermidine
+ O2
+ H2O
=
3-acetamidopropanal
Bound ligand (Het Group name = SPM)
matches with 42.86% similarity
+ putrescine
+ H2O2
      Cofactor: FAD
FAD
Bound ligand (Het Group name = FAD) corresponds exactly
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/j.jmb.2005.03.008 J Mol Biol 348:951-959 (2005)
PubMed id: 15843025  
 
 
Crystal structures of Fms1 and its complex with spermine reveal substrate specificity.
Q.Huang, Q.Liu, Q.Hao.
 
  ABSTRACT  
 
Fms1 is a rate-limiting enzyme for the biosynthesis of pantothenic acid in yeast. Fms1 has polyamine oxidase (PAO) activity, which converts spermine into spermidine and 3-aminopropanal. The 3-aminopropanal is further oxidized to produce beta-alanine, which is necessary for the biosynthesis of pantothenic acid. The crystal structures of Fms1 and its complex with the substrate spermine have been determined using the single-wavelength anomalous diffraction (SAD) phasing method. Fms1 consists of an FAD-binding domain, with Rossmann fold topology, and a substrate-binding domain. The active site is a tunnel located at the interface of the two domains. The substrate spermine binds to the active site mainly via hydrogen bonds and hydrophobic interactions. In the complex, C11 but not C9 of spermine is close enough to the catalytic site (N5 of FAD) to be oxidized. Therefore, the products are spermidine and 3-aminopropanal, rather than 3-(aminopropyl) 4-aminobutyraldehyde and 1,3-diaminoprone.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. (a) The F[o]-F[c] omit map contoured at 4s showing spermine in the complex. (b) In the complex, the substrate spermine binds to the active site of the enzyme mainly through two hydrogen bonds and hydrophobic interactions, especially the W174-spermine (C6-C9)-W65 hydrophobic sandwich. The C11 atom is close enough (3.76 Å) to the N5 atom of FAD to be oxidized, while C9 is too far from N5 of FAD to be oxidized. (c) A LIGPLOT42 outlining the substrate-tunnel interactions.
Figure 4.
Figure 4. The binding of the substrate spermine to the active site of Fms1 induces conformation changes of the protein. The side-chain of W174 (native in green; complex in red) moves to a new position to form the W174-spermine-W65 hydrophobic sandwich.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2005, 348, 951-959) copyright 2005.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21205212 A.Fiorillo, R.Federico, F.Polticelli, A.Boffi, F.Mazzei, M.Di Fusco, A.Ilari, and P.Tavladoraki (2011).
The structure of maize polyamine oxidase K300M mutant in complex with the natural substrates provides a snapshot of the catalytic mechanism of polyamine oxidation.
  FEBS J, 278, 809-821.  
20839014 P.Tavladoraki, M.Cervelli, F.Antonangeli, G.Minervini, P.Stano, R.Federico, P.Mariottini, and F.Polticelli (2011).
Probing mammalian spermine oxidase enzyme-substrate complex through molecular modeling, site-directed mutagenesis and biochemical characterization.
  Amino Acids, 40, 1115-1126.  
20946629 M.Cervelli, G.Bellavia, E.Fratini, R.Amendola, F.Polticelli, M.Barba, R.Federico, F.Signore, G.Gucciardo, R.Grillo, P.M.Woster, R.A.Casero, and P.Mariottini (2010).
Spermine oxidase (SMO) activity in breast tumor tissues and biochemical analysis of the anticancer spermine analogues BENSpm and CPENSpm.
  BMC Cancer, 10, 555.  
20000632 M.S.Adachi, P.R.Juarez, and P.F.Fitzpatrick (2010).
Mechanistic studies of human spermine oxidase: kinetic mechanism and pH effects.
  Biochemistry, 49, 386-392.  
19651103 P.F.Fitzpatrick (2010).
Oxidation of amines by flavoproteins.
  Arch Biochem Biophys, 493, 13-25.  
19624733 F.Forneris, E.Battaglioli, A.Mattevi, and C.Binda (2009).
New roles of flavoproteins in molecular cell biology: histone demethylase LSD1 and chromatin.
  FEBS J, 276, 4304-4312.  
19408960 H.Gaweska, M.Henderson Pozzi, D.M.Schmidt, D.G.McCafferty, and P.F.Fitzpatrick (2009).
Use of pH and kinetic isotope effects to establish chemistry as rate-limiting in oxidation of a peptide substrate by LSD1.
  Biochemistry, 48, 5440-5445.  
19911805 M.H.Pozzi, V.Gawandi, and P.F.Fitzpatrick (2009).
Mechanistic studies of para-substituted N,N'-dibenzyl-1,4-diaminobutanes as substrates for a mammalian polyamine oxidase.
  Biochemistry, 48, 12305-12313.  
19199575 M.Henderson Pozzi, V.Gawandi, and P.F.Fitzpatrick (2009).
pH dependence of a mammalian polyamine oxidase: insights into substrate specificity and the role of lysine 315.
  Biochemistry, 48, 1508-1516.  
18417467 K.Ida, M.Kurabayashi, M.Suguro, Y.Hiruma, T.Hikima, M.Yamomoto, and H.Suzuki (2008).
Structural basis of proteolytic activation of L-phenylalanine oxidase from Pseudomonas sp. P-501.
  J Biol Chem, 283, 16584-16590.
PDB codes: 2yr4 2yr5 2yr6
17898894 M.E.Webb, A.Marquet, R.R.Mendel, F.Rébeillé, and A.G.Smith (2007).
Elucidating biosynthetic pathways for vitamins and cofactors.
  Nat Prod Rep, 24, 988.  
  19890477 P.F.Fitzpatrick (2007).
Insights into the mechanisms of flavoprotein oxidases from kinetic isotope effects.
  J Labelled Comp Radiopharm, 50, 1016-1025.  
16519678 M.Bianchi, F.Polticelli, P.Ascenzi, M.Botta, R.Federico, P.Mariottini, and A.Cona (2006).
Inhibition of polyamine and spermine oxidases by polyamine analogues.
  FEBS J, 273, 1115-1123.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer