spacer
spacer

PDBsum entry 1xdn

Go to PDB code: 
Top Page protein ligands metals links
Ligase PDB id
1xdn
Contents
Protein chain
265 a.a.
Ligands
ATP
Metals
_MG
Waters ×444

References listed in PDB file
Key reference
Title High resolution crystal structure of a key editosome enzyme from trypanosoma brucei: RNA editing ligase 1.
Authors J.Deng, A.Schnaufer, R.Salavati, K.D.Stuart, W.G.Hol.
Ref. J Mol Biol, 2004, 343, 601-613. [DOI no: 10.1016/j.jmb.2004.08.041]
PubMed id 15465048
Abstract
Trypanosomatids are causative agents of several devastating tropical diseases such as African sleeping sickness, Chagas' disease and leishmaniasis. There are no effective vaccines available to date for treatment of these protozoan diseases, while current drugs have limited efficacy, significant toxicity and suffer from increasing resistance. Trypanosomatids have several remarkable and unique metabolic and structural features that are of great interest for developing new anti-protozoan therapeutics. One such feature is "RNA editing", an essential process in these pathogenic protozoa. Transcripts for key trypanosomatid mitochondrial proteins undergo extensive post-transcriptional RNA editing by specifically inserting or deleting uridylates from pre-mature mRNA in order to create mature mRNAs that encode functional proteins. The RNA editing process is carried out in a approximately 1.6 MDa multi-protein complex, the editosome. In Trypanosoma brucei, one of the editosome's core enzymes, the RNA editing ligase 1 (TbREL1), has been shown to be essential for survival of both insect and bloodstream forms of the parasite. We report here the crystal structure of the catalytic domain of TbREL1 at 1.2 A resolution, in complex with ATP and magnesium. The magnesium ion interacts with the beta and gamma-phosphate groups and is almost perfectly octahedrally coordinated by six phosphate and water oxygen atoms. ATP makes extensive direct and indirect interactions with the ligase via essentially all its atoms while extending its base into a deep pocket. In addition, the ATP makes numerous interactions with residues that are conserved in the editing ligases only. Further away from the active site, TbREL1 contains a unique loop containing several hydrophobic residues that are highly conserved among trypanosomatid RNA editing ligases which may play a role in protein-protein interactions in the editosome. The distinct characteristics of the adenine-binding pocket, and the absence of any close homolog in the human genome, bode well for the design of selective inhibitors that will block the essential RNA ligase function in a number of major protozoan pathogens.
Figure 6.
Figure 6. Superposition of TbREL1-ATP and T4Rnl2-AMP in stereo view. The two structures are superimposed on each other based on AMP. TbREL1 and ATP are shown in atom color and the TbREL1 residues near the ATP binding site as labeled. T4Rnl2 (PDB id 1s68) is shown in green and the AMP is shown in cyan. Notice the hydrogen bonding between the backbone atoms of residues I59 and I61 in TbREL1 and the sugar moiety and a-phosphate group of the ATP, respectively, as shown in red broken lines; these hydrogen bonds are absent from the T4Rnl2-AMP complex.
Figure 7.
Figure 7. Electrostatic potential surface of TbREL1 generated by GRASP.50 Blue: positive; red: negative. ATP is shown as ball-stick. Notice the negatively charged residue E60 near the ATP and the absence of extended positive potential surfaces. Seven conserved trypanosomatid residues are labeled.
The above figures are reprinted by permission from Elsevier: J Mol Biol (2004, 343, 601-613) copyright 2004.
PROCHECK
Go to PROCHECK summary
 Headers

 

spacer

spacer