spacer
spacer

PDBsum entry 1ubh

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Oxidoreductase PDB id
1ubh

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
267 a.a. *
534 a.a. *
Ligands
SF4 ×2
F3S
MPD ×11
FNE-CMO
Metals
_MG
Waters ×815
* Residue conservation analysis
PDB id:
1ubh
Name: Oxidoreductase
Title: Three-dimensional structure of the carbon monoxide complex of [nife]hydrogenase from desulufovibrio vulgaris miyazaki f
Structure: Periplasmic [nife] hydrogenase small subunit. Chain: s. Synonym: small subunit of [nife]hydrogenase. Periplasmic [nife] hydrogenase large subunit. Chain: l. Fragment: residues 19-552. Synonym: large subunit of [nife]hydrogenase. Ec: 1.12.2.1
Source: Desulfovibrio vulgaris str. 'Miyazaki f'. Organism_taxid: 883. Strain: miyazaki f. Strain: miyazaki f
Biol. unit: Dimer (from PQS)
Resolution:
1.35Å     R-factor:   0.131     R-free:   0.178
Authors: H.Ogata,Y.Mizoguchi,N.Mizuno,K.Miki,S.Adachi,N.Yasuoka,T.Yagi, O.Yamauchi,S.Hirota,Y.Higuchi
Key ref: H.Ogata et al. (2002). Structural studies of the carbon monoxide complex of [NiFe]hydrogenase from Desulfovibrio vulgaris Miyazaki F: suggestion for the initial activation site for dihydrogen. J Am Chem Soc, 124, 11628-11635. PubMed id: 12296727 DOI: 10.1021/ja012645k
Date:
04-Apr-03     Release date:   29-Apr-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P21853  (PHNS_DESVM) -  Periplasmic [NiFe] hydrogenase small subunit from Nitratidesulfovibrio vulgaris (strain DSM 19637 / Miyazaki F)
Seq:
Struc:
317 a.a.
267 a.a.
Protein chain
Pfam   ArchSchema ?
P21852  (PHNL_DESVM) -  Periplasmic [NiFe] hydrogenase large subunit from Nitratidesulfovibrio vulgaris (strain DSM 19637 / Miyazaki F)
Seq:
Struc:
 
Seq:
Struc:
567 a.a.
534 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: Chains S, L: E.C.1.12.2.1  - cytochrome-c3 hydrogenase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 2 Fe(III)-[cytochrome c3] + H2 = 2 Fe(II)-[cytochrome c3] + 2 H+
      Cofactor: Iron-sulfur; Ni(2+)
Iron-sulfur
Ni(2+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Key reference    
 
 
DOI no: 10.1021/ja012645k J Am Chem Soc 124:11628-11635 (2002)
PubMed id: 12296727  
 
 
Structural studies of the carbon monoxide complex of [NiFe]hydrogenase from Desulfovibrio vulgaris Miyazaki F: suggestion for the initial activation site for dihydrogen.
H.Ogata, Y.Mizoguchi, N.Mizuno, K.Miki, S.Adachi, N.Yasuoka, T.Yagi, O.Yamauchi, S.Hirota, Y.Higuchi.
 
  ABSTRACT  
 
The carbon monoxide complex of [NiFe]hydrogenase from Desulfovibrio vulgaris Miyazaki F has been characterized by X-ray crystallography and absorption and resonance Raman spectroscopy. Nine crystal structures of the [NiFe]hydrogenase in the CO-bound and CO-liberated forms were determined at 1.2-1.4 A resolution. The exogenously added CO was assigned to be bound to the Ni atom at the Ni-Fe active site. The CO was not replaced with H(2) in the dark at 100 K, but was liberated by illumination with a strong white light. The Ni-C distances and Ni-C-O angles were about 1.77 A and 160 degrees, respectively, except for one case (1.72 A and 135 degrees ), in which an additional electron density peak between the CO and Sgamma(Cys546) was recognized. Distinct changes were observed in the electron density distribution of the Ni and Sgamma(Cys546) atoms between the CO-bound and CO-liberated structures for all the crystals tested. The novel structural features found near the Ni and Sgamma(Cys546) atoms suggest that these two atoms at the Ni-Fe active site play a role during the initial H(2)-binding process. Anaerobic addition of CO to dithionite-reduced [NiFe]hydrogenase led to a new absorption band at about 470 nm ( approximately 3000 M(-1)cm(-1)). Resonance Raman spectra (excitation at 476.5 nm) of the CO complex revealed CO-isotope-sensitive bands at 375/393 and 430 cm(-1) (368 and 413 cm(-1) for (13)C(18)O). The frequencies and relative intensities of the CO-related Raman bands indicated that the exogenous CO is bound to the Ni atom with a bent Ni-C-O structure in solution, in agreement with the refined structure determined by X-ray crystallography.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20356731 B.E.Barton, M.T.Olsen, and T.B.Rauchfuss (2010).
Artificial hydrogenases.
  Curr Opin Biotechnol, 21, 292-297.  
20669037 C.Gutiérrez-Sánchez, O.Rüdiger, V.M.Fernández, A.L.De Lacey, M.Marques, and I.A.Pereira (2010).
Interaction of the active site of the Ni-Fe-Se hydrogenase from Desulfovibrio vulgaris Hildenborough with carbon monoxide and oxygen inhibitors.
  J Biol Inorg Chem, 15, 1285-1292.  
20301175 M.E.Pandelia, H.Ogata, and W.Lubitz (2010).
Intermediates in the catalytic cycle of [NiFe] hydrogenase: functional spectroscopy of the active site.
  Chemphyschem, 11, 1127-1140.  
20147622 Y.Ohki, K.Yasumura, M.Ando, S.Shimokata, and K.Tatsumi (2010).
A model for the CO-inhibited form of [NiFe] hydrogenase: synthesis of CO3Fe(micro-StBu)3Ni{SC6H3-2,6-(mesityl)2} and reversible CO addition at the Ni site.
  Proc Natl Acad Sci U S A, 107, 3994-3997.  
19173074 A.Perra, Q.Wang, A.J.Blake, E.S.Davies, J.McMaster, C.Wilson, and M.Schröder (2009).
Unusual formation of a [NiSFe(2)(CO)(6)] cluster: a structural model for the inactive form of [NiFe] hydrogenase.
  Dalton Trans, (), 925-931.  
19801638 F.Germer, I.Zebger, M.Saggu, F.Lendzian, R.Schulz, and J.Appel (2009).
Overexpression, isolation, and spectroscopic characterization of the bidirectional [NiFe] hydrogenase from Synechocystis sp. PCC 6803.
  J Biol Chem, 284, 36462-36472.  
19675641 J.C.Fontecilla-Camps, P.Amara, C.Cavazza, Y.Nicolet, and A.Volbeda (2009).
Structure-function relationships of anaerobic gas-processing metalloenzymes.
  Nature, 460, 814-822.  
19626348 M.E.Pandelia, H.Ogata, L.J.Currell, M.Flores, and W.Lubitz (2009).
Probing intermediates in the activation cycle of [NiFe] hydrogenase by infrared spectroscopy: the Ni-SIr state and its light sensitivity.
  J Biol Inorg Chem, 14, 1227-1241.  
18653896 S.Shima, O.Pilak, S.Vogt, M.Schick, M.S.Stagni, W.Meyer-Klaucke, E.Warkentin, R.K.Thauer, and U.Ermler (2008).
The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site.
  Science, 321, 572-575.
PDB codes: 3daf 3dag
18511566 Y.Ohki, K.Yasumura, K.Kuge, S.Tanino, M.Ando, Z.Li, and K.Tatsumi (2008).
Thiolate-bridged dinuclear iron(tris-carbonyl)-nickel complexes relevant to the active site of [NiFe] hydrogenase.
  Proc Natl Acad Sci U S A, 105, 7652-7657.  
16969669 M.Long, J.Liu, Z.Chen, B.Bleijlevens, W.Roseboom, and S.P.Albracht (2007).
Characterization of a HoxEFUYH type of [NiFe] hydrogenase from Allochromatium vinosum and some EPR and IR properties of the hydrogenase module.
  J Biol Inorg Chem, 12, 62-78.  
16511689 A.Pardo, A.L.De Lacey, V.M.Fernández, H.J.Fan, Y.Fan, and M.B.Hall (2006).
Density functional study of the catalytic cycle of nickel-iron [NiFe] hydrogenases and the involvement of high-spin nickel(II).
  J Biol Inorg Chem, 11, 286-306.  
16807976 J.W.Tye, M.Y.Darensbourg, and M.B.Hall (2006).
Correlation between computed gas-phase and experimentally determined solution-phase infrared spectra: models of the iron-iron hydrogenase enzyme active site.
  J Comput Chem, 27, 1454-1462.  
16234923 A.Volbeda, and J.C.Fontecilla-Camps (2005).
Structural bases for the catalytic mechanism of Ni-containing carbon monoxide dehydrogenases.
  Dalton Trans, (), 3443-3450.  
16271886 H.Ogata, S.Hirota, A.Nakahara, H.Komori, N.Shibata, T.Kato, K.Kano, and Y.Higuchi (2005).
Activation process of [NiFe] hydrogenase elucidated by high-resolution X-ray analyses: conversion of the ready to the unready state.
  Structure, 13, 1635-1642.
PDB codes: 1wui 1wuj 1wuk 1wul
15782259 J.Han, and D.Coucouvanis (2005).
Synthesis and structure of the organometallic MFe2(mu3-S)2 clusters (M = Mo or Fe).
  Dalton Trans, (), 1234-1240.  
16260746 K.A.Vincent, J.A.Cracknell, O.Lenz, I.Zebger, B.Friedrich, and F.A.Armstrong (2005).
Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels.
  Proc Natl Acad Sci U S A, 102, 16951-16954.  
15342627 B.Bleijlevens, T.Buhrke, E.van der Linden, B.Friedrich, and S.P.Albracht (2004).
The auxiliary protein HypX provides oxygen tolerance to the soluble [NiFe]-hydrogenase of ralstonia eutropha H16 by way of a cyanide ligand to nickel.
  J Biol Chem, 279, 46686-46691.  
14686932 E.J.Lyon, S.Shima, G.Buurman, S.Chowdhuri, A.Batschauer, K.Steinbach, and R.K.Thauer (2004).
UV-A/blue-light inactivation of the 'metal-free' hydrogenase (Hmd) from methanogenic archaea.
  Eur J Biochem, 271, 195-204.  
15062773 F.A.Armstrong (2004).
Hydrogenases: active site puzzles and progress.
  Curr Opin Chem Biol, 8, 133-140.  
14688251 S.Dementin, B.Burlat, A.L.De Lacey, A.Pardo, G.Adryanczyk-Perrier, B.Guigliarelli, V.M.Fernandez, and M.Rousset (2004).
A glutamate is the essential proton transfer gate during the catalytic cycle of the [NiFe] hydrogenase.
  J Biol Chem, 279, 10508-10513.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer