spacer
spacer

PDBsum entry 1osm

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Outer membrane protein PDB id
1osm

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
342 a.a. *
Ligands
D12 ×9
* Residue conservation analysis
PDB id:
1osm
Name: Outer membrane protein
Title: Osmoporin (ompk36) from klebsiella pneumoniae
Structure: Ompk36. Chain: a, b, c. Synonym: osmoporin. Engineered: yes
Source: Klebsiella pneumoniae. Organism_taxid: 573. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Homo-Trimer (from PDB file)
Resolution:
3.20Å     R-factor:   0.208     R-free:   0.223
Authors: R.Dutzler,T.Schirmer
Key ref:
R.Dutzler et al. (1999). Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae. Structure, 7, 425-434. PubMed id: 10196126 DOI: 10.1016/S0969-2126(99)80055-0
Date:
08-Jan-99     Release date:   26-Jul-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q48473  (OMPC_KLEPN) -  Outer membrane porin C from Klebsiella pneumoniae
Seq:
Struc:
363 a.a.
342 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/S0969-2126(99)80055-0 Structure 7:425-434 (1999)
PubMed id: 10196126  
 
 
Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae.
R.Dutzler, G.Rummel, S.Albertí, S.Hernández-Allés, P.Phale, J.Rosenbusch, V.Benedí, T.Schirmer.
 
  ABSTRACT  
 
BACKGROUND: Porins are channel-forming membrane proteins that confer solute permeability to the outer membrane of Gram-negative bacteria. In Escherichia coli, major nonspecific porins are matrix porin (OmpF) and osmoporin (OmpC), which show high sequence homology. In response to high osmolarity of the medium, OmpC is expressed at the expense of OmpF porin. Here, we study osmoporin of the pathogenic Klebsiella pneumoniae (OmpK36), which shares 87% sequence identity with E. coliOmpC in an attempt to establish why osmoporin is best suited to function at high osmotic pressure. RESULTS: The crystal structure of OmpK36 has been determined to a resolution of 3.2 A by molecular replacement with the model of OmpF. The structure of OmpK36 closely resembles that of the search model. The homotrimeric structure is composed of three hollow 16-stranded antiparallel beta barrels, each delimiting a separate pore. Most insertions and deletions with respect to OmpF are found in the loops that protrude towards the cell exterior. A characteristic ten-residue insertion in loop 4 contributes to the subunit interface. At the pore constriction, the replacement of an alanine by a tyrosine residue does not alter the pore profile of OmpK36 in comparison with OmpF because of the different course of the mainchain. Functionally, as characterized in lipid bilayers and liposomes, OmpK36 resembles OmpC with decreased conductance and increased cation selectivity in comparison with OmpF. CONCLUSIONS: The osmoporin structure suggests that not an altered pore size but an increase in charge density is the basis for the distinct physico-chemical properties of this porin that are relevant for its preferential expression at high osmotic strength.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Cyclic-averaged electron-density map (contoured at 1s) of OmpK36. (a) Stereoview of the OmpK36 pore viewed from the extracellular side. Residues of the arginine cluster are labeled (OmpF numbering convention). The internal loop L3 is seen at the right side of the pore. (b) Stereoview of the extracellular loop L4 (with carbon atoms coloured in yellow), which interacts with loop L1 (carbon atoms coloured in white) of a neighbouring monomer. Figures were generated with the program DINO (Philippsen, 1998; http://www.bioz.unibas.ch/ not, vert, similar-xray/dino).
 
  The above figure is reprinted by permission from Cell Press: Structure (1999, 7, 425-434) copyright 1999.  
  Figure was selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
18997824 J.M.Pagès, C.E.James, and M.Winterhalter (2008).
The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria.
  Nat Rev Microbiol, 6, 893-903.  
18154531 L.Martínez-Martínez (2008).
Extended-spectrum beta-lactamases and the permeability barrier.
  Clin Microbiol Infect, 14, 82-89.  
16888630 O.Yildiz, K.R.Vinothkumar, P.Goswami, and W.Kühlbrandt (2006).
Structure of the monomeric outer-membrane porin OmpG in the open and closed conformation.
  EMBO J, 25, 3702-3713.
PDB codes: 2iwv 2iww
16434398 U.Zachariae, T.Klühspies, S.De, H.Engelhardt, and K.Zeth (2006).
High resolution crystal structures and molecular dynamics studies reveal substrate binding in the porin Omp32.
  J Biol Chem, 281, 7413-7420.
PDB codes: 2fgq 2fgr
16021408 J.Katsaras, T.A.Harroun, J.Pencer, and M.P.Nieh (2005).
"Bicellar" lipid mixtures as used in biochemical and biophysical studies.
  Naturwissenschaften, 92, 355-366.  
15647112 P.G.Bagos, T.D.Liakopoulos, and S.J.Hamodrakas (2005).
Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
  BMC Bioinformatics, 6, 7.  
16252131 R.C.Vázquez-Juárez, M.Gómez-Chiarri, H.Barrera-Saldaña, N.Hernández, and F.Ascencio (2005).
The major Aeromonas veronii outer membrane protein: gene cloning and sequence analysis.
  Curr Microbiol, 51, 372-378.  
15155215 C.Bornet, N.Saint, L.Fetnaci, M.Dupont, A.Davin-Régli, C.Bollet, and J.M.Pagès (2004).
Omp35, a new Enterobacter aerogenes porin involved in selective susceptibility to cephalosporins.
  Antimicrob Agents Chemother, 48, 2153-2158.  
  15215418 F.S.Berven, K.Flikka, H.B.Jensen, and I.Eidhammer (2004).
BOMP: a program to predict integral beta-barrel outer membrane proteins encoded within genomes of Gram-negative bacteria.
  Nucleic Acids Res, 32, W394-W399.  
14978719 M.M.Gromiha, S.Ahmad, and M.Suwa (2004).
Neural network-based prediction of transmembrane beta-strand segments in outer membrane proteins.
  J Comput Chem, 25, 762-767.  
14506051 A.Doménech-Sánchez, L.Martínez-Martínez, S.Hernández-Allés, M.del Carmen Conejo, A.Pascual, J.M.Tomás, S.Albertí, and V.J.Benedí (2003).
Role of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance.
  Antimicrob Agents Chemother, 47, 3332-3335.  
14665678 H.Nikaido (2003).
Molecular basis of bacterial outer membrane permeability revisited.
  Microbiol Mol Biol Rev, 67, 593-656.  
12704154 S.Galdiero, D.Capasso, M.Vitiello, M.D'Isanto, C.Pedone, and M.Galdiero (2003).
Role of surface-exposed loops of Haemophilus influenzae protein P2 in the mitogen-activated protein kinase cascade.
  Infect Immun, 71, 2798-2809.  
11867478 A.Philippsen, W.Im, A.Engel, T.Schirmer, B.Roux, and D.J.Müller (2002).
Imaging the electrostatic potential of transmembrane channels: atomic probe microscopy of OmpF porin.
  Biophys J, 82, 1667-1676.  
12384391 B.Crowley, V.J.Benedí, and A.Doménech-Sánchez (2002).
Expression of SHV-2 beta-lactamase and of reduced amounts of OmpK36 porin in Klebsiella pneumoniae results in increased resistance to cephalosporins and carbapenems.
  Antimicrob Agents Chemother, 46, 3679-3682.  
12440693 K.M.Robertson, and D.P.Tieleman (2002).
Molecular basis of voltage gating of OmpF porin.
  Biochem Cell Biol, 80, 517-523.  
11751305 T.K.Rostovtseva, E.M.Nestorovich, and S.M.Bezrukov (2002).
Partitioning of differently sized poly(ethylene glycol)s into OmpF porin.
  Biophys J, 82, 160-169.  
12021430 U.Zachariae, A.Koumanov, H.Engelhardt, and A.Karshikoff (2002).
Electrostatic properties of the anion selective porin Omp32 from Delftia acidovorans and of the arginine cluster of bacterial porins.
  Protein Sci, 11, 1309-1319.  
11454211 E.Dé, A.Baslé, M.Jaquinod, N.Saint, M.Malléa, G.Molle, and J.M.Pagès (2001).
A new mechanism of antibiotic resistance in Enterobacteriaceae induced by a structural modification of the major porin.
  Mol Microbiol, 41, 189-198.  
11371453 T.Páli, and D.Marsh (2001).
Tilt, twist, and coiling in beta-barrel membrane proteins: relation to infrared dichroism.
  Biophys J, 80, 2789-2797.  
10981633 G.E.Schulz (2000).
beta-Barrel membrane proteins.
  Curr Opin Struct Biol, 10, 443-447.  
10966478 J.L.Popot, and D.M.Engelman (2000).
Helical membrane protein folding, stability, and evolution.
  Annu Rev Biochem, 69, 881-922.  
10986465 K.Zeth, K.Diederichs, W.Welte, and H.Engelhardt (2000).
Crystal structure of Omp32, the anion-selective porin from Comamonas acidovorans, in complex with a periplasmic peptide at 2.1 A resolution.
  Structure, 8, 981-992.
PDB code: 1e54
10981640 M.Caffrey (2000).
A lipid's eye view of membrane protein crystallization in mesophases.
  Curr Opin Struct Biol, 10, 486-497.  
10924740 M.Paetzel, R.E.Dalbey, and N.C.Strynadka (2000).
The structure and mechanism of bacterial type I signal peptidases. A novel antibiotic target.
  Pharmacol Ther, 87, 27-49.  
10991194 S.M.Bezrukov, and M.Winterhalter (2000).
Examining noise sources at the single-molecule level: 1/f noise of an open maltoporin channel.
  Phys Rev Lett, 85, 202-205.  
10692320 V.Borisenko, M.S.Sansom, and G.A.Woolley (2000).
Protonation of lysine residues inverts cation/anion selectivity in a model channel.
  Biophys J, 78, 1335-1348.  
10961503 Van Gelder P, F.Dumas, and M.Winterhalter (2000).
Understanding the function of bacterial outer membrane channels by reconstitution into black lipid membranes
  Biophys Chem, 85, 153-167.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer