spacer
spacer

PDBsum entry 1k3s

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Chaperone PDB id
1k3s

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
109 a.a.
Ligands
PO4
Waters ×50
PDB id:
1k3s
Name: Chaperone
Title: Type iii secretion chaperone sige
Structure: Sige. Chain: a, b. Fragment: full length. Engineered: yes. Mutation: yes
Source: Salmonella enterica. Organism_taxid: 28901. Strain: atcc14028s. Expressed in: escherichia coli. Expression_system_taxid: 469008.
Biol. unit: Dimer (from PQS)
Resolution:
1.90Å     R-factor:   0.224     R-free:   0.272
Authors: M.G.Bertero,Y.Luo,E.A.Frey,R.A.Pfuetzner,M.R.Wenk,L.Creagh, S.L.Marcus,D.Lim,B.B.Finlay,N.C.J.Strynadka
Key ref:
Y.Luo et al. (2001). Structural and biochemical characterization of the type III secretion chaperones CesT and SigE. Nat Struct Biol, 8, 1031-1036. PubMed id: 11685226 DOI: 10.1038/nsb717
Date:
03-Oct-01     Release date:   28-Nov-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
A0A0F6AZQ4  (A0A0F6AZQ4_SALT1) -  Chaperone protein from Salmonella typhimurium (strain 14028s / SGSC 2262)
Seq:
Struc:
113 a.a.
109 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1038/nsb717 Nat Struct Biol 8:1031-1036 (2001)
PubMed id: 11685226  
 
 
Structural and biochemical characterization of the type III secretion chaperones CesT and SigE.
Y.Luo, M.G.Bertero, E.A.Frey, R.A.Pfuetzner, M.R.Wenk, L.Creagh, S.L.Marcus, D.Lim, F.Sicheri, C.Kay, C.Haynes, B.B.Finlay, N.C.Strynadka.
 
  ABSTRACT  
 
Several Gram-negative bacterial pathogens have evolved a type III secretion system to deliver virulence effector proteins directly into eukaryotic cells, a process essential for disease. This specialized secretion process requires customized chaperones specific for particular effector proteins. The crystal structures of the enterohemorrhagic Escherichia coli O157:H7 Tir-specific chaperone CesT and the Salmonella enterica SigD-specific chaperone SigE reveal a common overall fold and formation of homodimers. Site-directed mutagenesis suggests that variable, delocalized hydrophobic surfaces observed on the chaperone homodimers are responsible for specific binding to a particular effector protein. Isothermal titration calorimetry studies of Tir-CesT and enzymatic activity profiles of SigD-SigE indicate that the effector proteins are not globally unfolded in the presence of their cognate chaperones.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Electron density with MAD phases improved by solvent modification. The stereo FOM-weighted F[o] maps are contoured at 1.4 . a, 2.8 Å map of CesT at the domain-swap interface. b, 1.9 Å map of SigE at the dimeric interface.
Figure 2.
Figure 2. Monomeric structures of a, CesT and b, SigE. c, Structure-based sequence alignment of CesT (top) and SigE (bottom). Helices are shaded blue; strands, green. Hydrophobic residues exposed on the surface of the SigE or SigE-like CesT homodimers are highlighted in red. The C-terminal amphipathic helix predicted by sequence analysis to be a potential source of hydrophobic residues for interaction with effector proteins4 packs with its hydrophobic face pointing into the buried hydrophobic core of the protein in both CesT and SigE. Thus, this region unlikely provides interactions with the effector unless dramatic unfolding of the chaperone occurs upon complex formation. (a,b), as well as Fig. 3a -c, were generated by MOLSCRIPT34 and RASTER3D^35.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2001, 8, 1031-1036) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20140193 C.A.Cooper, K.Zhang, S.N.Andres, Y.Fang, N.A.Kaniuk, M.Hannemann, J.H.Brumell, L.J.Foster, M.S.Junop, and B.K.Coombes (2010).
Structural and biochemical characterization of SrcA, a multi-cargo type III secretion chaperone in Salmonella required for pathogenic association with a host.
  PLoS Pathog, 6, e1000751.  
20110301 C.S.Oh, S.C.Carpenter, M.L.Hayes, and S.V.Beer (2010).
Secretion and translocation signals and DspB/F-binding domains in the type III effector DspA/E of Erwinia amylovora.
  Microbiology, 156, 1211-1220.  
20421493 K.Imada, T.Minamino, M.Kinoshita, Y.Furukawa, and K.Namba (2010).
Structural insight into the regulatory mechanisms of interactions of the flagellar type III chaperone FliT with its binding partners.
  Proc Natl Acad Sci U S A, 107, 8812-8817.
PDB code: 3a7m
20382763 L.Rodgers, R.Mukerjea, S.Birtalan, D.Friedberg, and P.Ghosh (2010).
A solvent-exposed patch in chaperone-bound YopE is required for translocation by the type III secretion system.
  J Bacteriol, 192, 3114-3122.  
19247429 B.Raveh, A.Enosh, O.Schueler-Furman, and D.Halperin (2009).
Rapid sampling of molecular motions with prior information constraints.
  PLoS Comput Biol, 5, e1000295.  
19114483 H.Matsumoto, and G.M.Young (2009).
Essential role of the SycP chaperone in type III secretion of the YspP effector.
  J Bacteriol, 191, 1703-1715.  
18794279 A.R.Castillo, A.J.Woodruff, L.E.Connolly, W.E.Sause, and K.M.Ottemann (2008).
Recombination-based in vivo expression technology identifies Helicobacter pylori genes important for host colonization.
  Infect Immun, 76, 5632-5644.  
18577754 J.E.Dawson, and L.K.Nicholson (2008).
Folding kinetics and thermodynamics of Pseudomonas syringae effector protein AvrPto provide insight into translocation via the type III secretion system.
  Protein Sci, 17, 1109-1119.  
18502763 L.Rodgers, A.Gamez, R.Riek, and P.Ghosh (2008).
The type III secretion chaperone SycE promotes a localized disorder-to-order transition in the natively unfolded effector YopE.
  J Biol Chem, 283, 20857-20863.  
18687869 S.Rumpel, R.Lakshmi, S.Becker, and M.Zweckstetter (2008).
Assignment-free solution NMR method reveals CesT as an unswapped homodimer.
  Protein Sci, 17, 2015-2019.  
17578515 E.Faudry, V.Job, A.Dessen, I.Attree, and V.Forge (2007).
Type III secretion system translocator has a molten globule conformation both in its free and chaperone-bound forms.
  FEBS J, 274, 3601-3610.  
17681945 N.A.Thomas, W.Deng, N.Baker, J.Puente, and B.B.Finlay (2007).
Hierarchical delivery of an essential host colonization factor in enteropathogenic Escherichia coli.
  J Biol Chem, 282, 29634-29645.  
17237797 R.Zarivach, M.Vuckovic, W.Deng, B.B.Finlay, and N.C.Strynadka (2007).
Structural analysis of a prototypical ATPase from the type III secretion system.
  Nat Struct Mol Biol, 14, 131-137.
PDB codes: 2obl 2obm
17612396 S.Dittmann, A.Schmid, S.Richter, K.Trülzsch, J.Heesemann, and G.Wilharm (2007).
The Yersinia enterocolitica type three secretion chaperone SycO is integrated into the Yop regulatory network and binds to the Yop secretion protein YscM1.
  BMC Microbiol, 7, 67.  
17197437 Z.Zheng, G.Chen, S.Joshi, E.D.Brutinel, T.L.Yahr, and L.Chen (2007).
Biochemical characterization of a regulatory cascade controlling transcription of the Pseudomonas aeruginosa type III secretion system.
  J Biol Chem, 282, 6136-6142.  
16954405 E.Allen-Vercoe, B.Waddell, M.C.Toh, and R.DeVinney (2006).
Amino acid residues within enterohemorrhagic Escherichia coli O157:H7 Tir involved in phosphorylation, alpha-actinin recruitment, and Nck-independent pedestal formation.
  Infect Immun, 74, 6196-6205.  
16487320 J.E.Bröms, P.J.Edqvist, A.Forsberg, and M.S.Francis (2006).
Tetratricopeptide repeats are essential for PcrH chaperone function in Pseudomonas aeruginosa type III secretion.
  FEMS Microbiol Lett, 256, 57-66.  
16359332 K.Ehrbar, B.Winnen, and W.D.Hardt (2006).
The chaperone binding domain of SopE inhibits transport via flagellar and SPI-1 TTSS in the absence of InvB.
  Mol Microbiol, 59, 248-264.  
17038123 L.A.Knodler, M.Bertero, C.Yip, N.C.Strynadka, and O.Steele-Mortimer (2006).
Structure-based mutagenesis of SigE verifies the importance of hydrophobic and electrostatic residues in type III chaperone function.
  Mol Microbiol, 62, 928-940.  
16794578 M.Letzelter, I.Sorg, L.J.Mota, S.Meyer, J.Stalder, M.Feldman, M.Kuhn, I.Callebaut, and G.R.Cornelis (2006).
The discovery of SycO highlights a new function for type III secretion effector chaperones.
  EMBO J, 25, 3223-3233.  
16507363 M.Lilic, M.Vujanac, and C.E.Stebbins (2006).
A common structural motif in the binding of virulence factors to bacterial secretion chaperones.
  Mol Cell, 21, 653-664.
PDB codes: 2fm8 2fm9
16359316 P.J.Edqvist, J.E.Bröms, H.J.Betts, A.Forsberg, M.J.Pallen, and M.S.Francis (2006).
Tetratricopeptide repeats in the type III secretion chaperone, LcrH: their role in substrate binding and secretion.
  Mol Microbiol, 59, 31-44.  
15619638 C.K.Yip, B.B.Finlay, and N.C.Strynadka (2005).
Structural characterization of a type III secretion system filament protein in complex with its chaperone.
  Nat Struct Mol Biol, 12, 75-81.
PDB code: 1xou
16046625 C.R.Büttner, G.R.Cornelis, D.W.Heinz, and H.H.Niemann (2005).
Crystal structure of Yersinia enterocolitica type III secretion chaperone SycT.
  Protein Sci, 14, 1993-2002.
PDB codes: 2bsh 2bsi 2bsj
15845459 J.Garmendia, G.Frankel, and V.F.Crepin (2005).
Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation.
  Infect Immun, 73, 2573-2585.  
16216444 L.J.Mota, I.Sorg, and G.R.Cornelis (2005).
Type III secretion: the bacteria-eukaryotic cell express.
  FEMS Microbiol Lett, 252, 1.  
15937188 M.Guo, S.T.Chancey, F.Tian, Z.Ge, Y.Jamir, and J.R.Alfano (2005).
Pseudomonas syringae type III chaperones ShcO1, ShcS1, and ShcS2 facilitate translocation of their cognate effectors and can substitute for each other in the secretion of HopO1-1.
  J Bacteriol, 187, 4257-4269.  
15757514 M.J.Pallen, S.A.Beatson, and C.M.Bailey (2005).
Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion.
  BMC Microbiol, 5, 9.  
15808742 M.J.Pallen, S.A.Beatson, and C.M.Bailey (2005).
Bioinformatics, genomics and evolution of non-flagellar type-III secretion systems: a Darwinian perspective.
  FEMS Microbiol Rev, 29, 201-229.  
16000312 M.Locher, B.Lehnert, K.Krauss, J.Heesemann, M.Groll, and G.Wilharm (2005).
Crystal structure of the Yersinia enterocolitica type III secretion chaperone SycT.
  J Biol Chem, 280, 31149-31155.
PDB code: 2bho
16115870 M.Quinaud, J.Chabert, E.Faudry, E.Neumann, D.Lemaire, A.Pastor, S.Elsen, A.Dessen, and I.Attree (2005).
The PscE-PscF-PscG complex controls type III secretion needle biogenesis in Pseudomonas aeruginosa.
  J Biol Chem, 280, 36293-36300.  
16135239 N.A.Thomas, W.Deng, J.L.Puente, E.A.Frey, C.K.Yip, N.C.Strynadka, and B.B.Finlay (2005).
CesT is a multi-effector chaperone and recruitment factor required for the efficient type III secretion of both LEE- and non-LEE-encoded effectors of enteropathogenic Escherichia coli.
  Mol Microbiol, 57, 1762-1779.  
15775974 P.I.Lario, R.A.Pfuetzner, E.A.Frey, L.Creagh, C.Haynes, A.T.Maurelli, and N.C.Strynadka (2005).
Structure and biochemical analysis of a secretin pilot protein.
  EMBO J, 24, 1111-1121.
PDB codes: 1y9l 1y9t
15929012 S.Rumpel, H.Y.Kim, V.Vijayan, S.Becker, and M.Zweckstetter (2005).
Backbone resonance assignment of the homodimeric, 35 kDa chaperone CesT from enteropathogenic Escherichia coli.
  J Biomol NMR, 31, 377-378.  
16208377 Y.Akeda, and J.E.Galán (2005).
Chaperone release and unfolding of substrates in type III secretion.
  Nature, 437, 911-915.  
15272862 A.P.Tampakaki, V.E.Fadouloglou, A.D.Gazi, N.J.Panopoulos, and M.Kokkinidis (2004).
Conserved features of type III secretion.
  Cell Microbiol, 6, 805-816.  
15341731 A.U.Singer, D.Desveaux, L.Betts, J.H.Chang, Z.Nimchuk, S.R.Grant, J.L.Dangl, and J.Sondek (2004).
Crystal structures of the type III effector protein AvrPphF and its chaperone reveal residues required for plant pathogenesis.
  Structure, 12, 1669-1681.
PDB codes: 1s21 1s28
15088068 A.van Eerde, C.Hamiaux, J.Pérez, C.Parsot, and B.W.Dijkstra (2004).
Structure of Spa15, a type III secretion chaperone from Shigella flexneri with broad specificity.
  EMBO Rep, 5, 477-483.
PDB code: 1ry9
15248901 G.Wilharm, V.Lehmann, W.Neumayer, J.Trcek, and J.Heesemann (2004).
Yersinia enterocolitica type III secretion: evidence for the ability to transport proteins that are folded prior to secretion.
  BMC Microbiol, 4, 27.  
15093830 H.Remaut, and G.Waksman (2004).
Structural biology of bacterial pathogenesis.
  Curr Opin Struct Biol, 14, 161-170.  
15333930 J.Phan, J.E.Tropea, and D.S.Waugh (2004).
Structure of the Yersinia pestis type III secretion chaperone SycH in complex with a stable fragment of YscM2.
  Acta Crystallogr D Biol Crystallogr, 60, 1591-1599.
PDB code: 1ttw
15150250 M.D.Wehling, M.Guo, Z.Q.Fu, and J.R.Alfano (2004).
The Pseudomonas syringae HopPtoV protein is secreted in culture and translocated into plant cells via the type III protein secretion system in a manner dependent on the ShcV type III chaperone.
  J Bacteriol, 186, 3621-3630.  
15590783 P.Ghosh (2004).
Process of protein transport by the type III secretion system.
  Microbiol Mol Biol Rev, 68, 771-795.  
14756788 S.H.Lee, and J.E.Galán (2004).
Salmonella type III secretion-associated chaperones confer secretion-pathway specificity.
  Mol Microbiol, 51, 483-495.  
14694203 V.E.Fadouloglou, A.P.Tampakaki, N.M.Glykos, M.N.Bastaki, J.M.Hadden, S.E.Phillips, N.J.Panopoulos, and M.Kokkinidis (2004).
Structure of HrcQB-C, a conserved component of the bacterial type III secretion systems.
  Proc Natl Acad Sci U S A, 101, 70-75.
PDB code: 1o9y
12958592 A.G.Evdokimov, J.Phan, J.E.Tropea, K.M.Routzahn, H.K.Peters, M.Pokross, and D.S.Waugh (2003).
Similar modes of polypeptide recognition by export chaperones in flagellar biosynthesis and type III secretion.
  Nat Struct Biol, 10, 789-793.
PDB codes: 1orj 1ory
14617638 A.Gauthier, and B.B.Finlay (2003).
Translocated intimin receptor and its chaperone interact with ATPase of the type III secretion apparatus of enteropathogenic Escherichia coli.
  J Bacteriol, 185, 6747-6755.  
12620624 A.J.Ozin, L.Claret, F.Auvray, and C.Hughes (2003).
The FliS chaperone selectively binds the disordered flagellin C-terminal D0 domain central to polymerisation.
  FEMS Microbiol Lett, 219, 219-224.  
12603739 D.V.Zurawski, and M.A.Stein (2003).
SseA acts as the chaperone for the SseB component of the Salmonella Pathogenicity Island 2 translocon.
  Mol Microbiol, 47, 1341-1351.  
12492865 E.A.Creasey, R.M.Delahay, A.A.Bishop, R.K.Shaw, B.Kenny, S.Knutton, and G.Frankel (2003).
CesT is a bivalent enteropathogenic Escherichia coli chaperone required for translocation of both Tir and Map.
  Mol Microbiol, 47, 209-221.  
14617659 K.Ehrbar, A.Friebel, S.I.Miller, and W.D.Hardt (2003).
Role of the Salmonella pathogenicity island 1 (SPI-1) protein InvB in type III secretion of SopE and SopE2, two Salmonella effector proteins encoded outside of SPI-1.
  J Bacteriol, 185, 6950-6967.  
12799000 M.J.Pallen, M.S.Francis, and K.Fütterer (2003).
Tetratricopeptide-like repeats in type-III-secretion chaperones and regulators.
  FEMS Microbiol Lett, 223, 53-60.
PDB codes: 1ool 1oom 1ooo 1oor 1oos
12352953 G.C.Leung, J.W.Hudson, A.Kozarova, A.Davidson, J.W.Dennis, and F.Sicheri (2002).
The Sak polo-box comprises a structural domain sufficient for mitotic subcellular localization.
  Nat Struct Biol, 9, 719-724.
PDB code: 1mby
12410834 H.Rüssmann, T.Kubori, J.Sauer, and J.E.Galán (2002).
Molecular and functional analysis of the type III secretion signal of the Salmonella enterica InvJ protein.
  Mol Microbiol, 46, 769-779.  
12142275 K.S.Ramamurthi, and O.Schneewind (2002).
Type iii protein secretion in yersinia species.
  Annu Rev Cell Dev Biol, 18, 107-133.  
12049734 S.C.Birtalan, R.M.Phillips, and P.Ghosh (2002).
Three-dimensional secretion signals in chaperone-effector complexes of bacterial pathogens.
  Mol Cell, 9, 971-980.
PDB code: 1l2w
12021428 Y.Liu, and D.Eisenberg (2002).
3D domain swapping: as domains continue to swap.
  Protein Sci, 11, 1285-1299.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer