 |
PDBsum entry 1hi0
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
RNA polymerase
|
PDB id
|
|
|
|
1hi0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
RNA polymerase
|
 |
|
Title:
|
 |
RNA dependent RNA polymerase from dsrna bacteriophage phi6 plus initiation complex
|
|
Structure:
|
 |
DNA (5'-( Tp Tp Tp Cp C)-3'). Chain: d, e, f. Engineered: yes. Other_details: 5 nucleotide DNA version of optimum RNA template. P2 protein. Chain: p, q, r. Synonym: RNA-directed RNA polymerase. Engineered: yes
|
|
Source:
|
 |
Synthetic: yes. Bacteriophage phi-6. Phage phi 6. Organism_taxid: 10879. Expressed in: escherichia coli. Expression_system_taxid: 469008.
|
|
Biol. unit:
|
 |
Hetero-Dimer (from PDB file)
|
|
Resolution:
|
 |
|
3.00Å
|
R-factor:
|
0.214
|
R-free:
|
0.239
|
|
|
Authors:
|
 |
J.M.Grimes,S.J.Butcher,E.V.Makeyev,D.H.Bamford,D.I.Stuart
|
Key ref:
|
 |
S.J.Butcher
et al.
(2001).
A mechanism for initiating RNA-dependent RNA polymerization.
Nature,
410,
235-240.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
31-Dec-00
|
Release date:
|
27-Mar-01
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P11124
(RDRP_BPPH6) -
RNA-directed RNA polymerase from Pseudomonas phage phi6
|
|
|
|
Seq: Struc:
|
 |
 |
 |
665 a.a.
664 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
*
PDB and UniProt seqs differ
at 1 residue position (black
cross)
|
|
|
|
|
|
|
|
|
|
T-T-C-C
4 bases
|
|
|
|
T-T-C-C
4 bases
|
|
|
|
T-T-C-C
4 bases
|
|
|
 |
 |
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.2.7.7.48
- RNA-directed Rna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
RNA(n) + a ribonucleoside 5'-triphosphate = RNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
RNA(n)
|
+
|
ribonucleoside 5'-triphosphate
|
=
|
RNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Nature
410:235-240
(2001)
|
|
PubMed id:
|
|
|
|
|
| |
|
A mechanism for initiating RNA-dependent RNA polymerization.
|
|
S.J.Butcher,
J.M.Grimes,
E.V.Makeyev,
D.H.Bamford,
D.I.Stuart.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
In most RNA viruses, genome replication and transcription are catalysed by a
viral RNA-dependent RNA polymerase. Double-stranded RNA viruses perform these
operations in a capsid (the polymerase complex), using an enzyme that can read
both single- and double-stranded RNA. Structures have been solved for such viral
capsids, but they do not resolve the polymerase subunits in any detail. Here we
show that the 2 A resolution X-ray structure of the active polymerase subunit
from the double-stranded RNA bacteriophage straight phi6 is highly similar to
that of the polymerase of hepatitis C virus, providing an evolutionary link
between double-stranded RNA viruses and flaviviruses. By crystal soaking and
co-crystallization, we determined a number of other structures, including
complexes with oligonucleotide and/or nucleoside triphosphates (NTPs), that
suggest a mechanism by which the incoming double-stranded RNA is opened up to
feed the template through to the active site, while the substrates enter by
another route. The template strand initially overshoots, locking into a
specificity pocket, and then, in the presence of cognate NTPs, reverses to form
the initiation complex; this process engages two NTPs, one of which acts with
the carboxy-terminal domain of the protein to prime the reaction. Our results
provide a working model for the initiation of replication and transcription.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Figure 2: Key aspects of various phi- 6
polymerase structures. a, 6
polymerase sliced open; arrows highlight key features. The areas
of the surrounding close-ups in b-e are marked by
semitransparent boxes, and orientations shown are with respect
to a. b, Surface representation28 viewed from above showing the
entrance to the template tunnel. Putative positions for the
strands before initiation are shown. c, A section through the
template channel with the bound oligomer drawn in yellow. The
surface of the polymerase and the embedded polypeptide chain are
coloured green. The two 3' cytidines are marked as T1 and T2. d,
Difference electron density map for the NTP bound to site I
(based on ninefold averaging of three difference density maps).
ATP is drawn with the phosphates coloured green. e, Stereo image
of the initiation complex. The 3' cytidines (T1 & T2) are drawn
in blue. The incoming GTPs, D1 and D2, are shown base paired
(bonds in red) to T1 and T2. Y630 ring stacks with the base of
D1. D453, D454 and D324 are the catalytic aspartates, the Mn2+
ion is shown in cyan, the two catalytic Mg2+ ions are in green.
|
 |
Figure 3.
Figure 3: Models for initiation and chain elongation. a Cartoon
illustrating key points in the reaction mechanism for phi- 6
polymerase. Red boxes highlight experimental results. I, apo
structure with bound Mn2+. Binding sites are identified in black
letters. II, NTP bound in site I. II|I, template bound. IV,
template bound and NTP non-productively bound at site I. V,
initial productive binding at site P. VI, template ratchets
back. VII, second GTP bound at site P. Polymerization can occur.
VIII, polymerization has occurred, releasing nascent duplex from
ordered binding at the active site C. The C-terminal domain
moves allowing the duplex to ratchet forward, out of the active
site. b, 6
polymerase and polymerases of the Reoviridae family in the
context of the viral capsid. Polymerases are coloured yellow. In
the Reoviridae panel the helicase is orange, and the 5' end of
the positive strand is attached to the polymerase, holding the
genome segment, ready to facilitate re-initiation.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2001,
410,
235-240)
copyright 2001.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
D.Takeshita,
and
K.Tomita
(2012).
Molecular basis for RNA polymerization by Qβ replicase.
|
| |
Nat Struct Mol Biol,
19,
229-237.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Zeng,
J.Li,
and
J.Liu
(2011).
Distinct interfacial biclique patterns between ssDNA-binding proteins and those with dsDNAs.
|
| |
Proteins,
79,
598-610.
|
 |
|
|
|
|
 |
Z.Jin,
J.Deval,
K.A.Johnson,
and
D.C.Swinney
(2011).
Characterization of the elongation complex of dengue virus RNA polymerase: assembly, kinetics of nucleotide incorporation, and fidelity.
|
| |
J Biol Chem,
286,
2067-2077.
|
 |
|
|
|
|
 |
D.Takeshita,
and
K.Tomita
(2010).
Assembly of Q{beta} viral RNA polymerase with host translational elongation factors EF-Tu and -Ts.
|
| |
Proc Natl Acad Sci U S A,
107,
15733-15738.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Xu
(2010).
Enhancing MAD F(A) data for substructure determination.
|
| |
Acta Crystallogr D Biol Crystallogr,
66,
945-949.
|
 |
|
|
|
|
 |
J.Qiao,
X.Qiao,
Y.Sun,
and
L.Mindich
(2010).
Role of host protein glutaredoxin 3 in the control of transcription during bacteriophage Phi2954 infection.
|
| |
Proc Natl Acad Sci U S A,
107,
6000-6004.
|
 |
|
|
|
|
 |
P.Gong,
and
O.B.Peersen
(2010).
Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase.
|
| |
Proc Natl Acad Sci U S A,
107,
22505-22510.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.J.Kranzusch,
A.D.Schenk,
A.A.Rahmeh,
S.R.Radoshitzky,
S.Bavari,
T.Walz,
and
S.P.Whelan
(2010).
Assembly of a functional Machupo virus polymerase complex.
|
| |
Proc Natl Acad Sci U S A,
107,
20069-20074.
|
 |
|
|
|
|
 |
S.Chinnaswamy,
A.Murali,
P.Li,
K.Fujisaki,
and
C.C.Kao
(2010).
Regulation of de novo-initiated RNA synthesis in hepatitis C virus RNA-dependent RNA polymerase by intermolecular interactions.
|
| |
J Virol,
84,
5923-5935.
|
 |
|
|
|
|
 |
S.L.Noton,
V.M.Cowton,
C.R.Zack,
D.R.McGivern,
and
R.Fearns
(2010).
Evidence that the polymerase of respiratory syncytial virus initiates RNA replication in a nontemplated fashion.
|
| |
Proc Natl Acad Sci U S A,
107,
10226-10231.
|
 |
|
|
|
|
 |
X.Qiao,
Y.Sun,
J.Qiao,
F.Di Sanzo,
and
L.Mindich
(2010).
Characterization of Phi2954, a newly isolated bacteriophage containing three dsRNA genomic segments.
|
| |
BMC Microbiol,
10,
55.
|
 |
|
|
|
|
 |
X.Qiao,
Y.Sun,
J.Qiao,
and
L.Mindich
(2010).
Interaction of a host protein with core complexes of bacteriophage phi6 to control transcription.
|
| |
J Virol,
84,
4821-4825.
|
 |
|
|
|
|
 |
Z.Ren,
H.Wang,
and
R.Ghose
(2010).
Dynamics on multiple timescales in the RNA-directed RNA polymerase from the cystovirus phi6.
|
| |
Nucleic Acids Res,
38,
5105-5118.
|
 |
|
|
|
|
 |
L.P.Sarin,
M.M.Poranen,
N.M.Lehti,
J.J.Ravantti,
M.R.Koivunen,
A.P.Aalto,
A.A.van Dijk,
D.I.Stuart,
J.M.Grimes,
and
D.H.Bamford
(2009).
Insights into the pre-initiation events of bacteriophage phi 6 RNA-dependent RNA polymerase: towards the assembly of a productive binary complex.
|
| |
Nucleic Acids Res,
37,
1182-1192.
|
 |
|
|
|
|
 |
N.E.Grossoehme,
L.Li,
S.C.Keane,
P.Liu,
C.E.Dann,
J.L.Leibowitz,
and
D.P.Giedroc
(2009).
Coronavirus N protein N-terminal domain (NTD) specifically binds the transcriptional regulatory sequence (TRS) and melts TRS-cTRS RNA duplexes.
|
| |
J Mol Biol,
394,
544-557.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Simister,
M.Schmitt,
M.Geitmann,
O.Wicht,
U.H.Danielson,
R.Klein,
S.Bressanelli,
and
V.Lohmann
(2009).
Structural and functional analysis of hepatitis C virus strain JFH1 polymerase.
|
| |
J Virol,
83,
11926-11939.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Abrahem,
and
M.Pelchat
(2008).
Formation of an RNA polymerase II preinitiation complex on an RNA promoter derived from the hepatitis delta virus RNA genome.
|
| |
Nucleic Acids Res,
36,
5201-5211.
|
 |
|
|
|
|
 |
A.Gruez,
B.Selisko,
M.Roberts,
G.Bricogne,
C.Bussetta,
I.Jabafi,
B.Coutard,
A.M.De Palma,
J.Neyts,
and
B.Canard
(2008).
The crystal structure of coxsackievirus B3 RNA-dependent RNA polymerase in complex with its protein primer VPg confirms the existence of a second VPg binding site on Picornaviridae polymerases.
|
| |
J Virol,
82,
9577-9590.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Nikonov,
E.Juronen,
and
M.Ustav
(2008).
Functional characterization of fingers subdomain-specific monoclonal antibodies inhibiting the hepatitis C virus RNA-dependent RNA polymerase.
|
| |
J Biol Chem,
283,
24089-24102.
|
 |
|
|
|
|
 |
A.Sen,
J.B.Heymann,
N.Cheng,
J.Qiao,
L.Mindich,
and
A.C.Steven
(2008).
Initial location of the RNA-dependent RNA polymerase in the bacteriophage Phi6 procapsid determined by cryo-electron microscopy.
|
| |
J Biol Chem,
283,
12227-12231.
|
 |
|
|
|
|
 |
A.Shatkin,
K.Das,
and
E.Arnold
(2008).
3D jigsaw puzzle in rotavirus assembly.
|
| |
Structure,
16,
1601-1602.
|
 |
|
|
|
|
 |
E.Eryilmaz,
J.Benach,
M.Su,
J.Seetharaman,
K.Dutta,
H.Wei,
P.Gottlieb,
J.F.Hunt,
and
R.Ghose
(2008).
Structure and dynamics of the P7 protein from the bacteriophage phi 12.
|
| |
J Mol Biol,
382,
402-422.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.T.Vreede,
H.Gifford,
and
G.G.Brownlee
(2008).
Role of initiating nucleoside triphosphate concentrations in the regulation of influenza virus replication and transcription.
|
| |
J Virol,
82,
6902-6910.
|
 |
|
|
|
|
 |
G.B.Hu,
H.Wei,
W.J.Rice,
D.L.Stokes,
and
P.Gottlieb
(2008).
Electron cryo-tomographic structure of cystovirus phi 12.
|
| |
Virology,
372,
1-9.
|
 |
|
|
|
|
 |
H.Xu,
and
C.M.Weeks
(2008).
Rapid and automated substructure solution by Shake-and-Bake.
|
| |
Acta Crystallogr D Biol Crystallogr,
64,
172-177.
|
 |
|
|
|
|
 |
I.D.Vilfan,
A.Candelli,
S.Hage,
A.P.Aalto,
M.M.Poranen,
D.H.Bamford,
and
N.H.Dekker
(2008).
Reinitiated viral RNA-dependent RNA polymerase resumes replication at a reduced rate.
|
| |
Nucleic Acids Res,
36,
7059-7067.
|
 |
|
|
|
|
 |
J.J.Ellis,
and
S.Jones
(2008).
Evaluating conformational changes in protein structures binding RNA.
|
| |
Proteins,
70,
1518-1526.
|
 |
|
|
|
|
 |
K.K.Ng,
J.J.Arnold,
and
C.E.Cameron
(2008).
Structure-function relationships among RNA-dependent RNA polymerases.
|
| |
Curr Top Microbiol Immunol,
320,
137-156.
|
 |
|
|
|
|
 |
M.M.Poranen,
M.R.Koivunen,
and
D.H.Bamford
(2008).
Nontemplated terminal nucleotidyltransferase activity of double-stranded RNA bacteriophage phi6 RNA-dependent RNA polymerase.
|
| |
J Virol,
82,
9254-9264.
|
 |
|
|
|
|
 |
M.M.Poranen,
P.S.Salgado,
M.R.Koivunen,
S.Wright,
D.H.Bamford,
D.I.Stuart,
and
J.M.Grimes
(2008).
Structural explanation for the role of Mn2+ in the activity of phi6 RNA-dependent RNA polymerase.
|
| |
Nucleic Acids Res,
36,
6633-6644.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
O.Nyanguile,
F.Pauwels,
W.Van den Broeck,
C.W.Boutton,
L.Quirynen,
T.Ivens,
L.van der Helm,
G.Vandercruyssen,
W.Mostmans,
F.Delouvroy,
P.Dehertogh,
M.D.Cummings,
J.F.Bonfanti,
K.A.Simmen,
and
P.Raboisson
(2008).
1,5-benzodiazepines, a novel class of hepatitis C virus polymerase nonnucleoside inhibitors.
|
| |
Antimicrob Agents Chemother,
52,
4420-4431.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Roy
(2008).
Bluetongue virus: dissection of the polymerase complex.
|
| |
J Gen Virol,
89,
1789-1804.
|
 |
|
|
|
|
 |
S.Chinnaswamy,
I.Yarbrough,
S.Palaninathan,
C.T.Kumar,
V.Vijayaraghavan,
B.Demeler,
S.M.Lemon,
J.C.Sacchettini,
and
C.C.Kao
(2008).
A locking mechanism regulates RNA synthesis and host protein interaction by the hepatitis C virus polymerase.
|
| |
J Biol Chem,
283,
20535-20546.
|
 |
|
|
|
|
 |
S.Hoover,
and
R.Striker
(2008).
Thiopurines inhibit bovine viral diarrhea virus production in a thiopurine methyltransferase-dependent manner.
|
| |
J Gen Virol,
89,
1000-1009.
|
 |
|
|
|
|
 |
X.Lu,
S.M.McDonald,
M.A.Tortorici,
Y.J.Tao,
R.Vasquez-Del Carpio,
M.L.Nibert,
J.T.Patton,
and
S.C.Harrison
(2008).
Mechanism for coordinated RNA packaging and genome replication by rotavirus polymerase VP1.
|
| |
Structure,
16,
1678-1688.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.A.Thompson,
R.A.Albertini,
and
O.B.Peersen
(2007).
Stabilization of poliovirus polymerase by NTP binding and fingers-thumb interactions.
|
| |
J Mol Biol,
366,
1459-1474.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.E.Wallin,
A.Salmi,
and
R.Tuma
(2007).
Step length measurement--theory and simulation for tethered bead constant-force single molecule assay.
|
| |
Biophys J,
93,
795-805.
|
 |
|
|
|
|
 |
A.P.Aalto,
L.P.Sarin,
A.A.van Dijk,
M.Saarma,
M.M.Poranen,
U.Arumäe,
and
D.H.Bamford
(2007).
Large-scale production of dsRNA and siRNA pools for RNA interference utilizing bacteriophage phi6 RNA-dependent RNA polymerase.
|
| |
RNA,
13,
422-429.
|
 |
|
|
|
|
 |
C.Ferrer-Orta,
A.Arias,
R.Pérez-Luque,
C.Escarmís,
E.Domingo,
and
N.Verdaguer
(2007).
Sequential structures provide insights into the fidelity of RNA replication.
|
| |
Proc Natl Acad Sci U S A,
104,
9463-9468.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Garriga,
A.Navarro,
J.Querol-Audí,
F.Abaitua,
J.F.Rodríguez,
and
N.Verdaguer
(2007).
Activation mechanism of a noncanonical RNA-dependent RNA polymerase.
|
| |
Proc Natl Acad Sci U S A,
104,
20540-20545.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Moradpour,
F.Penin,
and
C.M.Rice
(2007).
Replication of hepatitis C virus.
|
| |
Nat Rev Microbiol,
5,
453-463.
|
 |
|
|
|
|
 |
F.Pauwels,
W.Mostmans,
L.M.Quirynen,
L.van der Helm,
C.W.Boutton,
A.S.Rueff,
E.Cleiren,
P.Raboisson,
D.Surleraux,
O.Nyanguile,
and
K.A.Simmen
(2007).
Binding-site identification and genotypic profiling of hepatitis C virus polymerase inhibitors.
|
| |
J Virol,
81,
6909-6919.
|
 |
|
|
|
|
 |
H.Malet,
M.P.Egloff,
B.Selisko,
R.E.Butcher,
P.J.Wright,
M.Roberts,
A.Gruez,
G.Sulzenbacher,
C.Vonrhein,
G.Bricogne,
J.M.Mackenzie,
A.A.Khromykh,
A.D.Davidson,
and
B.Canard
(2007).
Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5.
|
| |
J Biol Chem,
282,
10678-10689.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.T.Jäälinoja,
J.T.Huiskonen,
and
S.J.Butcher
(2007).
Electron cryomicroscopy comparison of the architectures of the enveloped bacteriophages phi6 and phi8.
|
| |
Structure,
15,
157-167.
|
 |
|
|
|
|
 |
J.Deval,
C.M.D'Abramo,
Z.Zhao,
S.McCormick,
D.Coutsinos,
S.Hess,
M.Kvaratskhelia,
and
M.Götte
(2007).
High resolution footprinting of the hepatitis C virus polymerase NS5B in complex with RNA.
|
| |
J Biol Chem,
282,
16907-16916.
|
 |
|
|
|
|
 |
J.M.Wehrfritz,
M.Boyce,
S.Mirza,
and
P.Roy
(2007).
Reconstitution of bluetongue virus polymerase activity from isolated domains based on a three-dimensional structural model.
|
| |
Biopolymers,
86,
83-94.
|
 |
|
|
|
|
 |
J.Pan,
V.N.Vakharia,
and
Y.J.Tao
(2007).
The structure of a birnavirus polymerase reveals a distinct active site topology.
|
| |
Proc Natl Acad Sci U S A,
104,
7385-7390.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Beerens,
B.Selisko,
S.Ricagno,
I.Imbert,
L.van der Zanden,
E.J.Snijder,
and
B.Canard
(2007).
De novo initiation of RNA synthesis by the arterivirus RNA-dependent RNA polymerase.
|
| |
J Virol,
81,
8384-8395.
|
 |
|
|
|
|
 |
R.De Francesco,
and
A.Carfí
(2007).
Advances in the development of new therapeutic agents targeting the NS3-4A serine protease or the NS5B RNA-dependent RNA polymerase of the hepatitis C virus.
|
| |
Adv Drug Deliv Rev,
59,
1242-1262.
|
 |
|
|
|
|
 |
T.L.Yap,
T.Xu,
Y.L.Chen,
H.Malet,
M.P.Egloff,
B.Canard,
S.G.Vasudevan,
and
J.Lescar
(2007).
Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution.
|
| |
J Virol,
81,
4753-4765.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Suzuki,
K.Ishii,
H.Aizaki,
and
T.Wakita
(2007).
Hepatitis C viral life cycle.
|
| |
Adv Drug Deliv Rev,
59,
1200-1212.
|
 |
|
|
|
|
 |
A.Jakubiec,
V.Tournier,
G.Drugeon,
S.Pflieger,
L.Camborde,
J.Vinh,
F.Héricourt,
V.Redeker,
and
I.Jupin
(2006).
Phosphorylation of viral RNA-dependent RNA polymerase and its role in replication of a plus-strand RNA virus.
|
| |
J Biol Chem,
281,
21236-21249.
|
 |
|
|
|
|
 |
C.Ferrer-Orta,
A.Arias,
R.Agudo,
R.Pérez-Luque,
C.Escarmís,
E.Domingo,
and
N.Verdaguer
(2006).
The structure of a protein primer-polymerase complex in the initiation of genome replication.
|
| |
EMBO J,
25,
880-888.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.H.Schein,
D.E.Volk,
N.Oezguen,
and
A.Paul
(2006).
Novel, structure-based mechanism for uridylylation of the genome-linked peptide (VPg) of picornaviruses.
|
| |
Proteins,
63,
719-726.
|
 |
|
|
|
|
 |
C.M.D'Abramo,
J.Deval,
C.E.Cameron,
L.Cellai,
and
M.Götte
(2006).
Control of template positioning during de novo initiation of RNA synthesis by the bovine viral diarrhea virus NS5B polymerase.
|
| |
J Biol Chem,
281,
24991-24998.
|
 |
|
|
|
|
 |
C.T.Ranjith-Kumar,
and
C.C.Kao
(2006).
Recombinant viral RdRps can initiate RNA synthesis from circular templates.
|
| |
RNA,
12,
303-312.
|
 |
|
|
|
|
 |
E.V.Koonin,
T.G.Senkevich,
and
V.V.Dolja
(2006).
The ancient Virus World and evolution of cells.
|
| |
Biol Direct,
1,
29.
|
 |
|
|
|
|
 |
H.Dutartre,
C.Bussetta,
J.Boretto,
and
B.Canard
(2006).
General catalytic deficiency of hepatitis C virus RNA polymerase with an S282T mutation and mutually exclusive resistance towards 2'-modified nucleotide analogues.
|
| |
Antimicrob Agents Chemother,
50,
4161-4169.
|
 |
|
|
|
|
 |
J.Ortín,
and
F.Parra
(2006).
Structure and function of RNA replication.
|
| |
Annu Rev Microbiol,
60,
305-326.
|
 |
|
|
|
|
 |
J.T.Huiskonen,
F.de Haas,
D.Bubeck,
D.H.Bamford,
S.D.Fuller,
and
S.J.Butcher
(2006).
Structure of the bacteriophage phi6 nucleocapsid suggests a mechanism for sequential RNA packaging.
|
| |
Structure,
14,
1039-1048.
|
 |
|
|
|
|
 |
J.Wereszczynski,
and
I.Andricioaei
(2006).
On structural transitions, thermodynamic equilibrium, and the phase diagram of DNA and RNA duplexes under torque and tension.
|
| |
Proc Natl Acad Sci U S A,
103,
16200-16205.
|
 |
|
|
|
|
 |
K.H.Choi,
A.Gallei,
P.Becher,
and
M.G.Rossmann
(2006).
The structure of bovine viral diarrhea virus RNA-dependent RNA polymerase and its amino-terminal domain.
|
| |
Structure,
14,
1107-1113.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.A.Jones,
L.E.Clancy,
W.D.Rawlinson,
and
P.A.White
(2006).
High-affinity aptamers to subtype 3a hepatitis C virus polymerase display genotypic specificity.
|
| |
Antimicrob Agents Chemother,
50,
3019-3027.
|
 |
|
|
|
|
 |
M.V.Kozlov,
K.M.Polyakov,
A.V.Ivanov,
S.E.Filippova,
A.O.Kuzyakin,
V.L.Tunitskaya,
and
S.N.Kochetkov
(2006).
Hepatitis C virus RNA-dependent RNA polymerase: study on the inhibition mechanism by pyrogallol derivatives.
|
| |
Biochemistry (Mosc),
71,
1021-1026.
|
 |
|
|
|
|
 |
M.Wassenegger,
and
G.Krczal
(2006).
Nomenclature and functions of RNA-directed RNA polymerases.
|
| |
Trends Plant Sci,
11,
142-151.
|
 |
|
|
|
|
 |
N.Appel,
T.Schaller,
F.Penin,
and
R.Bartenschlager
(2006).
From structure to function: new insights into hepatitis C virus RNA replication.
|
| |
J Biol Chem,
281,
9833-9836.
|
 |
|
|
|
|
 |
P.S.Salgado,
M.R.Koivunen,
E.V.Makeyev,
D.H.Bamford,
D.I.Stuart,
and
J.M.Grimes
(2006).
The structure of an RNAi polymerase links RNA silencing and transcription.
|
| |
PLoS Biol,
4,
e434.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Kamtekar,
A.J.Berman,
J.Wang,
J.M.Lázaro,
M.de Vega,
L.Blanco,
M.Salas,
and
T.A.Steitz
(2006).
The phi29 DNA polymerase:protein-primer structure suggests a model for the initiation to elongation transition.
|
| |
EMBO J,
25,
1335-1343.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Wang,
N.Kato,
A.Jazag,
N.Dharel,
M.Otsuka,
H.Taniguchi,
T.Kawabe,
and
M.Omata
(2006).
Hepatitis C virus core protein is a potent inhibitor of RNA silencing-based antiviral response.
|
| |
Gastroenterology,
130,
883-892.
|
 |
|
|
|
|
 |
B.D.Lindenbach,
and
C.M.Rice
(2005).
Unravelling hepatitis C virus replication from genome to function.
|
| |
Nature,
436,
933-938.
|
 |
|
|
|
|
 |
B.K.Biswal,
M.M.Cherney,
M.Wang,
L.Chan,
C.G.Yannopoulos,
D.Bilimoria,
O.Nicolas,
J.Bedard,
and
M.N.James
(2005).
Crystal structures of the RNA-dependent RNA polymerase genotype 2a of hepatitis C virus reveal two conformations and suggest mechanisms of inhibition by non-nucleoside inhibitors.
|
| |
J Biol Chem,
280,
18202-18210.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.J.Hartley,
D.R.Greenwood,
R.J.Gilbert,
A.Masoumi,
K.H.Gordon,
T.N.Hanzlik,
E.E.Fry,
D.I.Stuart,
and
P.D.Scotti
(2005).
Kelp fly virus: a novel group of insect picorna-like viruses as defined by genome sequence analysis and a distinctive virion structure.
|
| |
J Virol,
79,
13385-13398.
|
 |
|
|
|
|
 |
G.Kukolj,
G.A.McGibbon,
G.McKercher,
M.Marquis,
S.Lefèbvre,
L.Thauvette,
J.Gauthier,
S.Goulet,
M.A.Poupart,
and
P.L.Beaulieu
(2005).
Binding site characterization and resistance to a class of non-nucleoside inhibitors of the hepatitis C virus NS5B polymerase.
|
| |
J Biol Chem,
280,
39260-39267.
|
 |
|
|
|
|
 |
H.Dutartre,
J.Boretto,
J.C.Guillemot,
and
B.Canard
(2005).
A relaxed discrimination of 2'-O-methyl-GTP relative to GTP between de novo and Elongative RNA synthesis by the hepatitis C RNA-dependent RNA polymerase NS5B.
|
| |
J Biol Chem,
280,
6359-6368.
|
 |
|
|
|
|
 |
I.Rodríguez,
J.M.Lázaro,
L.Blanco,
S.Kamtekar,
A.J.Berman,
J.Wang,
T.A.Steitz,
M.Salas,
and
M.de Vega
(2005).
A specific subdomain in phi29 DNA polymerase confers both processivity and strand-displacement capacity.
|
| |
Proc Natl Acad Sci U S A,
102,
6407-6412.
|
 |
|
|
|
|
 |
M.Dutkiewicz,
and
J.Ciesiolka
(2005).
Structural characterization of the highly conserved 98-base sequence at the 3' end of HCV RNA genome and the complementary sequence located at the 5' end of the replicative viral strand.
|
| |
Nucleic Acids Res,
33,
693-703.
|
 |
|
|
|
|
 |
M.Hema,
K.Gopinath,
and
C.Kao
(2005).
Repair of the tRNA-like CCA sequence in a multipartite positive-strand RNA virus.
|
| |
J Virol,
79,
1417-1427.
|
 |
|
|
|
|
 |
M.Tilgner,
T.S.Deas,
and
P.Y.Shi
(2005).
The flavivirus-conserved penta-nucleotide in the 3' stem-loop of the West Nile virus genome requires a specific sequence and structure for RNA synthesis, but not for viral translation.
|
| |
Virology,
331,
375-386.
|
 |
|
|
|
|
 |
P.S.Salgado,
M.A.Walsh,
M.R.Laurila,
D.I.Stuart,
and
J.M.Grimes
(2005).
Going soft and SAD with manganese.
|
| |
Acta Crystallogr D Biol Crystallogr,
61,
108-111.
|
 |
|
|
|
|
 |
R.Esteban,
L.Vega,
and
T.Fujimura
(2005).
Launching of the yeast 20 s RNA narnavirus by expressing the genomic or antigenomic viral RNA in vivo.
|
| |
J Biol Chem,
280,
33725-33734.
|
 |
|
|
|
|
 |
S.Di Marco,
C.Volpari,
L.Tomei,
S.Altamura,
S.Harper,
F.Narjes,
U.Koch,
M.Rowley,
R.De Francesco,
G.Migliaccio,
and
A.Carfí
(2005).
Interdomain communication in hepatitis C virus polymerase abolished by small molecule inhibitors bound to a novel allosteric site.
|
| |
J Biol Chem,
280,
29765-29770.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.C.Appleby,
H.Luecke,
J.H.Shim,
J.Z.Wu,
I.W.Cheney,
W.Zhong,
L.Vogeley,
Z.Hong,
and
N.Yao
(2005).
Crystal structure of complete rhinovirus RNA polymerase suggests front loading of protein primer.
|
| |
J Virol,
79,
277-288.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.C.Kim,
W.K.Russell,
C.T.Ranjith-Kumar,
M.Thomson,
D.H.Russell,
and
C.C.Kao
(2005).
Functional analysis of RNA binding by the hepatitis C virus RNA-dependent RNA polymerase.
|
| |
J Biol Chem,
280,
38011-38019.
|
 |
|
|
|
|
 |
A.A.Thompson,
and
O.B.Peersen
(2004).
Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase.
|
| |
EMBO J,
23,
3462-3471.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Ferrer-Orta,
A.Arias,
R.Perez-Luque,
C.Escarmís,
E.Domingo,
and
N.Verdaguer
(2004).
Structure of foot-and-mouth disease virus RNA-dependent RNA polymerase and its complex with a template-primer RNA.
|
| |
J Biol Chem,
279,
47212-47221.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Liu,
R.Chopra,
S.Swanberg,
S.Olland,
J.O'Connell,
and
S.Herrmann
(2004).
Elongation of synthetic RNA templates by hepatitis C virus NS5B polymerase.
|
| |
J Biol Chem,
279,
10738-10746.
|
 |
|
|
|
|
 |
D.W.Gohara,
J.J.Arnold,
and
C.E.Cameron
(2004).
Poliovirus RNA-dependent RNA polymerase (3Dpol): kinetic, thermodynamic, and structural analysis of ribonucleotide selection.
|
| |
Biochemistry,
43,
5149-5158.
|
 |
|
|
|
|
 |
E.Area,
J.Martín-Benito,
P.Gastaminza,
E.Torreira,
J.M.Valpuesta,
J.L.Carrascosa,
and
J.Ortín
(2004).
3D structure of the influenza virus polymerase complex: localization of subunit domains.
|
| |
Proc Natl Acad Sci U S A,
101,
308-313.
|
 |
|
|
|
|
 |
E.J.Mancini,
D.E.Kainov,
J.M.Grimes,
R.Tuma,
D.H.Bamford,
and
D.I.Stuart
(2004).
Atomic snapshots of an RNA packaging motor reveal conformational changes linking ATP hydrolysis to RNA translocation.
|
| |
Cell,
118,
743-755.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
F.Penin,
J.Dubuisson,
F.A.Rey,
D.Moradpour,
and
J.M.Pawlotsky
(2004).
Structural biology of hepatitis C virus.
|
| |
Hepatology,
39,
5.
|
 |
|
|
|
|
 |
I.Benzaghou,
I.Bougie,
and
M.Bisaillon
(2004).
Effect of metal ion binding on the structural stability of the hepatitis C virus RNA polymerase.
|
| |
J Biol Chem,
279,
49755-49761.
|
 |
|
|
|
|
 |
J.L.Chong,
R.Y.Chuang,
L.Tung,
and
T.H.Chang
(2004).
Ded1p, a conserved DExD/H-box translation factor, can promote yeast L-A virus negative-strand RNA synthesis in vitro.
|
| |
Nucleic Acids Res,
32,
2031-2038.
|
 |
|
|
|
|
 |
K.H.Choi,
J.M.Groarke,
D.C.Young,
R.J.Kuhn,
J.L.Smith,
D.C.Pevear,
and
M.G.Rossmann
(2004).
The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation.
|
| |
Proc Natl Acad Sci U S A,
101,
4425-4430.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.K.Ng,
N.Pendás-Franco,
J.Rojo,
J.A.Boga,
A.Machín,
J.M.Alonso,
and
F.Parra
(2004).
Crystal structure of norwalk virus polymerase reveals the carboxyl terminus in the active site cleft.
|
| |
J Biol Chem,
279,
16638-16645.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Tilgner,
and
P.Y.Shi
(2004).
Structure and function of the 3' terminal six nucleotides of the west nile virus genome in viral replication.
|
| |
J Virol,
78,
8159-8171.
|
 |
|
|
|
|
 |
P.Puustinen,
and
K.Mäkinen
(2004).
Uridylylation of the potyvirus VPg by viral replicase NIb correlates with the nucleotide binding capacity of VPg.
|
| |
J Biol Chem,
279,
38103-38110.
|
 |
|
|
|
|
 |
P.S.Salgado,
E.V.Makeyev,
S.J.Butcher,
D.H.Bamford,
D.I.Stuart,
and
J.M.Grimes
(2004).
The structural basis for RNA specificity and Ca2+ inhibition of an RNA-dependent RNA polymerase.
|
| |
Structure,
12,
307-316.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.A.Love,
K.A.Maegley,
X.Yu,
R.A.Ferre,
L.K.Lingardo,
W.Diehl,
H.E.Parge,
P.S.Dragovich,
and
S.A.Fuhrman
(2004).
The crystal structure of the RNA-dependent RNA polymerase from human rhinovirus: a dual function target for common cold antiviral therapy.
|
| |
Structure,
12,
1533-1544.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Crowder,
and
K.Kirkegaard
(2004).
Complete three-dimensional structures of picornaviral RNA-dependent RNA polymerases.
|
| |
Structure,
12,
1336-1339.
|
 |
|
|
|
|
 |
T.Fujimura,
and
R.Esteban
(2004).
Bipartite 3'-cis-acting signal for replication in yeast 23 S RNA virus and its repair.
|
| |
J Biol Chem,
279,
13215-13223.
|
 |
|
|
|
|
 |
Z.Cai,
T.J.Liang,
and
G.Luo
(2004).
Effects of mutations of the initiation nucleotides on hepatitis C virus RNA replication in the cell.
|
| |
J Virol,
78,
3633-3643.
|
 |
|
|
|
|
 |
A.A.Khromykh,
N.Kondratieva,
J.Y.Sgro,
A.Palmenberg,
and
E.G.Westaway
(2003).
Significance in replication of the terminal nucleotides of the flavivirus genome.
|
| |
J Virol,
77,
10623-10629.
|
 |
|
|
|
|
 |
C.T.Ranjith-Kumar,
X.Zhang,
and
C.C.Kao
(2003).
Enhancer-like activity of a brome mosaic virus RNA promoter.
|
| |
J Virol,
77,
1830-1839.
|
 |
|
|
|
|
 |
G.Migliaccio,
J.E.Tomassini,
S.S.Carroll,
L.Tomei,
S.Altamura,
B.Bhat,
L.Bartholomew,
M.R.Bosserman,
A.Ceccacci,
L.F.Colwell,
R.Cortese,
R.De Francesco,
A.B.Eldrup,
K.L.Getty,
X.S.Hou,
R.L.LaFemina,
S.W.Ludmerer,
M.MacCoss,
D.R.McMasters,
M.W.Stahlhut,
D.B.Olsen,
D.J.Hazuda,
and
O.A.Flores
(2003).
Characterization of resistance to non-obligate chain-terminating ribonucleoside analogs that inhibit hepatitis C virus replication in vitro.
|
| |
J Biol Chem,
278,
49164-49170.
|
 |
|
|
|
|
 |
H.Yang,
E.V.Makeyev,
S.J.Butcher,
A.Gaidelyte,
and
D.H.Bamford
(2003).
Two distinct mechanisms ensure transcriptional polarity in double-stranded RNA bacteriophages.
|
| |
J Virol,
77,
1195-1203.
|
 |
|
|
|
|
 |
J.A.Bruenn
(2003).
A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases.
|
| |
Nucleic Acids Res,
31,
1821-1829.
|
 |
|
|
|
|
 |
K.S.Murakami,
and
S.A.Darst
(2003).
Bacterial RNA polymerases: the wholo story.
|
| |
Curr Opin Struct Biol,
13,
31-39.
|
 |
|
|
|
|
 |
L.Tomei,
S.Altamura,
L.Bartholomew,
A.Biroccio,
A.Ceccacci,
L.Pacini,
F.Narjes,
N.Gennari,
M.Bisbocci,
I.Incitti,
L.Orsatti,
S.Harper,
I.Stansfield,
M.Rowley,
R.De Francesco,
and
G.Migliaccio
(2003).
Mechanism of action and antiviral activity of benzimidazole-based allosteric inhibitors of the hepatitis C virus RNA-dependent RNA polymerase.
|
| |
J Virol,
77,
13225-13231.
|
 |
|
|
|
|
 |
M.A.Tortorici,
T.J.Broering,
M.L.Nibert,
and
J.T.Patton
(2003).
Template recognition and formation of initiation complexes by the replicase of a segmented double-stranded RNA virus.
|
| |
J Biol Chem,
278,
32673-32682.
|
 |
|
|
|
|
 |
M.Nomaguchi,
M.Ackermann,
C.Yon,
S.You,
R.Padmanabhan,
and
R.Padmanbhan
(2003).
De novo synthesis of negative-strand RNA by Dengue virus RNA-dependent RNA polymerase in vitro: nucleotide, primer, and template parameters.
|
| |
J Virol,
77,
8831-8842.
|
 |
|
|
|
|
 |
M.P.Walker,
N.Yao,
and
Z.Hong
(2003).
Promising candidates for the treatment of chronic hepatitis C.
|
| |
Expert Opin Investig Drugs,
12,
1269-1280.
|
 |
|
|
|
|
 |
N.Ito,
O.Nureki,
M.Shirouzu,
S.Yokoyama,
and
F.Hanaoka
(2003).
Crystal structure of the Pyrococcus horikoshii DNA primase-UTP complex: implications for the mechanism of primer synthesis.
|
| |
Genes Cells,
8,
913-923.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Bellecave,
M.L.Andreola,
M.Ventura,
L.Tarrago-Litvak,
S.Litvak,
and
T.Astier-Gin
(2003).
Selection of DNA aptamers that bind the RNA-dependent RNA polymerase of hepatitis C virus and inhibit viral RNA synthesis in vitro.
|
| |
Oligonucleotides,
13,
455-463.
|
 |
|
|
|
|
 |
R.A.Love,
H.E.Parge,
X.Yu,
M.J.Hickey,
W.Diehl,
J.Gao,
H.Wriggers,
A.Ekker,
L.Wang,
J.A.Thomson,
P.S.Dragovich,
and
S.A.Fuhrman
(2003).
Crystallographic identification of a noncompetitive inhibitor binding site on the hepatitis C virus NS5B RNA polymerase enzyme.
|
| |
J Virol,
77,
7575-7581.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Esteban,
and
T.Fujimura
(2003).
Launching the yeast 23S RNA Narnavirus shows 5' and 3' cis-acting signals for replication.
|
| |
Proc Natl Acad Sci U S A,
100,
2568-2573.
|
 |
|
|
|
|
 |
V.J.Lévêque,
R.B.Johnson,
S.Parsons,
J.Ren,
C.Xie,
F.Zhang,
and
Q.M.Wang
(2003).
Identification of a C-terminal regulatory motif in hepatitis C virus RNA-dependent RNA polymerase: structural and biochemical analysis.
|
| |
J Virol,
77,
9020-9028.
|
 |
|
|
|
|
 |
X.Xu,
Y.Liu,
S.Weiss,
E.Arnold,
S.G.Sarafianos,
and
J.Ding
(2003).
Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design.
|
| |
Nucleic Acids Res,
31,
7117-7130.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Schuster,
C.Isel,
I.Imbert,
C.Ehresmann,
R.Marquet,
and
M.P.Kieny
(2002).
Secondary structure of the 3' terminus of hepatitis C virus minus-strand RNA.
|
| |
J Virol,
76,
8058-8068.
|
 |
|
|
|
|
 |
C.T.Ranjith-Kumar,
L.Gutshall,
M.J.Kim,
R.T.Sarisky,
and
C.C.Kao
(2002).
Requirements for de novo initiation of RNA synthesis by recombinant flaviviral RNA-dependent RNA polymerases.
|
| |
J Virol,
76,
12526-12536.
|
 |
|
|
|
|
 |
C.T.Ranjith-Kumar,
Y.C.Kim,
L.Gutshall,
C.Silverman,
S.Khandekar,
R.T.Sarisky,
and
C.C.Kao
(2002).
Mechanism of de novo initiation by the hepatitis C virus RNA-dependent RNA polymerase: role of divalent metals.
|
| |
J Virol,
76,
12513-12525.
|
 |
|
|
|
|
 |
D.Moradpour,
E.Bieck,
T.Hügle,
W.Wels,
J.Z.Wu,
Z.Hong,
H.E.Blum,
and
R.Bartenschlager
(2002).
Functional properties of a monoclonal antibody inhibiting the hepatitis C virus RNA-dependent RNA polymerase.
|
| |
J Biol Chem,
277,
593-601.
|
 |
|
|
|
|
 |
E.V.Makeyev,
and
D.H.Bamford
(2002).
Cellular RNA-dependent RNA polymerase involved in posttranscriptional gene silencing has two distinct activity modes.
|
| |
Mol Cell,
10,
1417-1427.
|
 |
|
|
|
|
 |
J.H.Shim,
G.Larson,
J.Z.Wu,
and
Z.Hong
(2002).
Selection of 3'-template bases and initiating nucleotides by hepatitis C virus NS5B RNA-dependent RNA polymerase.
|
| |
J Virol,
76,
7030-7039.
|
 |
|
|
|
|
 |
J.M.Lyle,
A.Clewell,
K.Richmond,
O.C.Richards,
D.A.Hope,
S.C.Schultz,
and
K.Kirkegaard
(2002).
Similar structural basis for membrane localization and protein priming by an RNA-dependent RNA polymerase.
|
| |
J Biol Chem,
277,
16324-16331.
|
 |
|
|
|
|
 |
K.M.Reinisch
(2002).
The dsRNA Viridae and their catalytic capsids.
|
| |
Nat Struct Biol,
9,
714-716.
|
 |
|
|
|
|
 |
K.S.Rajendran,
J.Pogany,
and
P.D.Nagy
(2002).
Comparison of turnip crinkle virus RNA-dependent RNA polymerase preparations expressed in Escherichia coli or derived from infected plants.
|
| |
J Virol,
76,
1707-1717.
|
 |
|
|
|
|
 |
M.R.Laurila,
E.V.Makeyev,
and
D.H.Bamford
(2002).
Bacteriophage phi 6 RNA-dependent RNA polymerase: molecular details of initiating nucleic acid synthesis without primer.
|
| |
J Biol Chem,
277,
17117-17124.
|
 |
|
|
|
|
 |
P.Ahlquist
(2002).
RNA-dependent RNA polymerases, viruses, and RNA silencing.
|
| |
Science,
296,
1270-1273.
|
 |
|
|
|
|
 |
P.Cramer
(2002).
Common structural features of nucleic acid polymerases.
|
| |
Bioessays,
24,
724-729.
|
 |
|
|
|
|
 |
P.Labonté,
V.Axelrod,
A.Agarwal,
A.Aulabaugh,
A.Amin,
and
P.Mak
(2002).
Modulation of hepatitis C virus RNA-dependent RNA polymerase activity by structure-based site-directed mutagenesis.
|
| |
J Biol Chem,
277,
38838-38846.
|
 |
|
|
|
|
 |
S.Bressanelli,
L.Tomei,
F.A.Rey,
and
R.De Francesco
(2002).
Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides.
|
| |
J Virol,
76,
3482-3492.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Kashiwagi,
K.Hara,
M.Kohara,
J.Iwahashi,
N.Hamada,
H.Honda-Yoshino,
and
T.Toyoda
(2002).
Promoter/origin structure of the complementary strand of hepatitis C virus genome.
|
| |
J Biol Chem,
277,
28700-28705.
|
 |
|
|
|
|
 |
D.M.Tretheway,
S.Yoshinari,
and
T.W.Dreher
(2001).
Autonomous role of 3'-terminal CCCA in directing transcription of RNAs by Qbeta replicase.
|
| |
J Virol,
75,
11373-11383.
|
 |
|
|
|
|
 |
E.V.Makeyev,
and
D.H.Bamford
(2001).
Primer-independent RNA sequencing with bacteriophage phi6 RNA polymerase and chain terminators.
|
| |
RNA,
7,
774-781.
|
 |
|
|
|
|
 |
H.Yang,
E.V.Makeyev,
and
D.H.Bamford
(2001).
Comparison of polymerase subunits from double-stranded RNA bacteriophages.
|
| |
J Virol,
75,
11088-11095.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |