spacer
spacer

PDBsum entry 1efb

Go to PDB code: 
protein links
Blood clotting PDB id
1efb
Contents
Protein chain
136 a.a.*
* C-alpha coords only
Theoretical model
PDB id:
1efb
Name: Blood clotting
Title: Staphylococcus aureus efb protein (theoretical model) predicted 3d structure for the alpha-carbon backbone by a de novo modeling procedure involving the use of the residue residue contact method.
Structure: Efb protein. Chain: a
Source: Staphylococcus aureus. Strain: newman. Other_details: protein isolated from supernate of staphylococcus aureus strain newman culture.
Authors: D.Wade,M.Palma,J.-I.Flock,K.D.Berndt,J.Silberring, S.G.Galaktionov
Key ref:
B.W.Poland et al. (2000). Structural insights into the protein splicing mechanism of PI-SceI. J Biol Chem, 275, 16408-16413. PubMed id: 10828056 DOI: 10.1074/jbc.275.22.16408
Date:
03-Jan-99     Release date:   13-Jan-99    
 Headers
 References

Protein chain
No UniProt id for this chain
Struc: 136 a.a.
Key:    Secondary structure

 

 
    Key reference    
 
 
DOI no: 10.1074/jbc.275.22.16408 J Biol Chem 275:16408-16413 (2000)
PubMed id: 10828056  
 
 
Structural insights into the protein splicing mechanism of PI-SceI.
B.W.Poland, M.Q.Xu, F.A.Quiocho.
 
  ABSTRACT  
 
PI-SceI is a member of a class of proteins (inteins) that excise themselves from a precursor protein and in the process ligate the flanking protein sequences (exteins). We report here the 2.1-A resolution crystal structure of a PI-SceI miniprecursor (VMA29) containing 10 N-terminal extein residues and 4 C-terminal extein residues. Mutations at the N- and C-terminal splicing junctions, blocking in vivo protein splicing, allowed the miniprecursor to be purified and crystallized. The structure reveals both the N- and C-terminal scissile peptide bonds to be in distorted trans conformations (tau approximately 100 degrees ). Modeling of the wild-type PI-SceI based on the VMA29 structure indicates a large conformational change (movement of >9 A) must occur to allow transesterification to be completed. A zinc atom was discovered at the C-terminal splicing junction. Residues Cys(455), His(453), and Glu(80) along with a water molecule (Wat(53)) chelate the zinc atom. The crystal structure of VMA29 has captured the intein in its pre-spliced state.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. a, schematic diagram of the chemical mechanism for protein splicing. The four-step reaction couples the excision of the intein (red) from the precursor protein with the ligation of the two exteins (blue and blue-green) via a native peptide bond. b, diagram of the new motif structure of PI-SceI according to Pietrokovski (9). Blocks N1-N4 and C1 and C2 (blue) contain residues involved in protein splicing; blocks EN1-EN4 (black) contain residues associated with the endonuclease/linker domain. Nucleophilic residues are highlighted below the block diagram (yellow letters in purple box), and highly conserved residues are shown in red. c, sequence alignment of the wild-type PI-SceI (VMA) and mutant miniprecursor ( VMA29). The red dash and arrow illustrate the N- and C-terminal splicing sites. Red residues in the VMA29 sequence indicate mutations made to the wild-type sequence (blue). Cys1 and Asn454 were mutated to Ala in order to block in vivo protein splicing.
Figure 3.
Fig. 3. Close-up view of the zinc coordination at the C-terminal splicing junction of molecule B of VMA29. Zinc atom is the purple sphere.
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (2000, 275, 16408-16413) copyright 2000.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21460844 B.P.Callahan, N.I.Topilina, M.J.Stanger, P.Van Roey, and M.Belfort (2011).
Structure of catalytically competent intein caught in a redox trap with functional and evolutionary implications.
  Nat Struct Mol Biol, 18, 630-633.
PDB code: 3nzm
21539790 P.T.Shemella, N.I.Topilina, I.Soga, B.Pereira, G.Belfort, M.Belfort, and S.K.Nayak (2011).
Electronic structure of neighboring extein residue modulates intein C-terminal cleavage activity.
  Biophys J, 100, 2217-2225.  
20209535 L.Zhang, N.Xiao, Y.Pan, Y.Zheng, Z.Pan, Z.Luo, X.Xu, and Y.Liu (2010).
Binding and inhibition of copper ions to RecA inteins from Mycobacterium tuberculosis.
  Chemistry, 16, 4297-4306.  
20495572 S.Frutos, M.Goger, B.Giovani, D.Cowburn, and T.W.Muir (2010).
Branched intermediate formation stimulates peptide bond cleavage in protein splicing.
  Nat Chem Biol, 6, 527-533.  
19462022 L.Zhang, Y.Zheng, Z.Xi, Z.Luo, X.Xu, C.Wang, and Y.Liu (2009).
Metal ions binding to recA inteins from Mycobacterium tuberculosis.
  Mol Biosyst, 5, 644-650.  
19153786 M.Dori-Bachash, B.Dassa, O.Peleg, S.A.Pineiro, E.Jurkevitch, and S.Pietrokovski (2009).
Bacterial intein-like domains of predatory bacteria: a new domain type characterized in Bdellovibrio bacteriovorus.
  Funct Integr Genomics, 9, 153-166.  
19630416 Z.Du, P.T.Shemella, Y.Liu, S.A.McCallum, B.Pereira, S.K.Nayak, G.Belfort, M.Belfort, and C.Wang (2009).
Highly conserved histidine plays a dual catalytic role in protein splicing: a pKa shift mechanism.
  J Am Chem Soc, 131, 11581-11589.  
18287282 Y.Sun, and H.C.Guo (2008).
Structural constraints on autoprocessing of the human nucleoporin Nup98.
  Protein Sci, 17, 494-505.
PDB codes: 2q5x 2q5y
17452357 J.Prieto, P.Redondo, D.Padró, S.Arnould, J.C.Epinat, F.Pâques, F.J.Blanco, and G.Montoya (2007).
The C-terminal loop of the homing endonuclease I-CreI is essential for site recognition, DNA binding and cleavage.
  Nucleic Acids Res, 35, 3262-3271.
PDB code: 2o7m
17586768 M.A.Johnson, M.W.Southworth, T.Herrmann, L.Brace, F.B.Perler, and K.Wüthrich (2007).
NMR structure of a KlbA intein precursor from Methanococcus jannaschii.
  Protein Sci, 16, 1316-1328.
PDB codes: 2jmz 2jnq
  18084082 P.Redondo, J.Prieto, E.Ramos, F.J.Blanco, and G.Montoya (2007).
Crystallization and preliminary X-ray diffraction analysis on the homing endonuclease I-Dmo-I in complex with its target DNA.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 63, 1017-1020.  
17085503 P.Shemella, B.Pereira, Y.Zhang, P.Van Roey, G.Belfort, S.Garde, and S.K.Nayak (2007).
Mechanism for intein C-terminal cleavage: a proposal from quantum mechanical calculations.
  Biophys J, 92, 847-853.  
17254599 P.Van Roey, B.Pereira, Z.Li, K.Hiraga, M.Belfort, and V.Derbyshire (2007).
Crystallographic and mutational studies of Mycobacterium tuberculosis recA mini-inteins suggest a pivotal role for a highly conserved aspartate residue.
  J Mol Biol, 367, 162-173.
PDB codes: 2imz 2in0 2in8 2in9
16540435 F.B.Perler (2006).
Protein splicing mechanisms and applications.
  IUBMB Life, 58, 63.  
16830226 J.Yang, T.V.Henry-Smith, and M.Qi (2006).
Functional analysis of the split Synechocystis DnaE intein in plant tissues by biolistic particle bombardment.
  Transgenic Res, 15, 583-593.  
16760973 K.Tani, and B.M.Stoltz (2006).
Synthesis and structural analysis of 2-quinuclidonium tetrafluoroborate.
  Nature, 441, 731-734.  
15862101 T.C.Evans, M.Q.Xu, and S.Pradhan (2005).
Protein splicing elements and plants: from transgene containment to protein purification.
  Annu Rev Plant Biol, 56, 375-392.  
15087498 A.Romanelli, A.Shekhtman, D.Cowburn, and T.W.Muir (2004).
Semisynthesis of a segmental isotopically labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein-intein junction.
  Proc Natl Acad Sci U S A, 101, 6397-6402.  
15184905 M.P.Zeidler, C.Tan, Y.Bellaiche, S.Cherry, S.Häder, U.Gayko, and N.Perrimon (2004).
Temperature-sensitive control of protein activity by conditionally splicing inteins.
  Nat Biotechnol, 22, 871-876.  
15099733 R.Aroul-Selvam, T.Hubbard, and R.Sasidharan (2004).
Domain insertions in protein structures.
  J Mol Biol, 338, 633-641.  
14764082 R.David, M.P.Richter, and A.G.Beck-Sickinger (2004).
Expressed protein ligation. Method and applications.
  Eur J Biochem, 271, 663-677.  
14633979 F.Schmitzberger, M.L.Kilkenny, C.M.Lobley, M.E.Webb, M.Vinkovic, D.Matak-Vinkovic, M.Witty, D.Y.Chirgadze, A.G.Smith, C.Abell, and T.L.Blundell (2003).
Structural constraints on protein self-processing in L-aspartate-alpha-decarboxylase.
  EMBO J, 22, 6193-6204.
PDB codes: 1ppy 1pqe 1pqf 1pqh 1pt0 1pt1 1pyq 1pyu
12771221 J.C.Epinat, S.Arnould, P.Chames, P.Rochaix, D.Desfontaines, C.Puzin, A.Patin, A.Zanghellini, F.Pâques, and E.Lacroix (2003).
A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells.
  Nucleic Acids Res, 31, 2952-2962.  
12906830 X.Qian, C.Guan, and H.C.Guo (2003).
A dual role for an aspartic acid in glycosylasparaginase autoproteolysis.
  Structure, 11, 997.
PDB codes: 1p4k 1p4v
12235380 E.Werner, W.Wende, A.Pingoud, and U.Heinemann (2002).
High resolution crystal structure of domain I of the Saccharomyces cerevisiae homing endonuclease PI-SceI.
  Nucleic Acids Res, 30, 3962-3971.
PDB code: 1gpp
11752343 F.B.Perler (2002).
InBase: the Intein Database.
  Nucleic Acids Res, 30, 383-384.  
12142479 J.P.Gogarten, A.G.Senejani, O.Zhaxybayeva, L.Olendzenski, and E.Hilario (2002).
Inteins: structure, function, and evolution.
  Annu Rev Microbiol, 56, 263-287.  
10975457 F.B.Perler, and E.Adam (2000).
Protein splicing and its applications.
  Curr Opin Biotechnol, 11, 377-383.  
10990465 M.W.Southworth, J.Benner, and F.B.Perler (2000).
An alternative protein splicing mechanism for inteins lacking an N-terminal nucleophile.
  EMBO J, 19, 5019-5026.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer