spacer
spacer

PDBsum entry 1d5d

Go to PDB code: 
Top Page protein ligands Protein-protein interface(s) links
Hydrolase PDB id
1d5d
Contents
Protein chains
15 a.a. *
101 a.a. *
Ligands
SO4
Waters ×138
* Residue conservation analysis

References listed in PDB file
Key reference
Title Thermodynamic and structural studies of cavity formation in proteins suggest that loss of packing interactions rather than the hydrophobic effect dominates the observed energetics.
Authors G.S.Ratnaparkhi, R.Varadarajan.
Ref. Biochemistry, 2000, 39, 12365-12374. [DOI no: 10.1021/bi000775k]
PubMed id 11015216
Abstract
The hydrophobic effect is widely believed to be an important determinant of protein stability. However, it is difficult to obtain unambiguous experimental estimates of the contribution of the hydrophobic driving force to the overall free energy of folding. Thermodynamic and structural studies of large to small substitutions in proteins are the most direct method of measuring this contribution. We have substituted the buried residue Phe8 in RNase S with alanine, methionine, and norleucine. Binding thermodynamics and structures were characterized by titration calorimetry and crystallography, respectively. The crystal structures of the RNase S F8A, F8M, and F8Nle mutants indicate that the protein tolerates the changes without any main chain adjustments. The correlation of structural and thermodynamic parameters associated with large to small substitutions was analyzed for nine mutants of RNase S as well as 32 additional cavity-containing mutants of T4 lysozyme, human lysozyme, and barnase. Such substitutions were typically found to result in negligible changes in DeltaC(p)() and positive values of both DeltaDeltaH degrees and DeltaDeltaS of folding. Enthalpic effects were dominant, and the sign of DeltaDeltaS is the opposite of that expected from the hydrophobic effect. Values of DeltaDeltaG degrees and DeltaDeltaH degrees correlated better with changes in packing parameters such as residue depth or occluded surface than with the change in accessible surface area upon folding. These results suggest that the loss of packing interactions rather than the hydrophobic effect is a dominant contributor to the observed energetics for large to small substitutions. Hence, estimates of the magnitude of the hydrophobic driving force derived from earlier mutational studies are likely to be significantly in excess of the actual value.
Secondary reference #1
Title X-Ray crystallographic studies of the denaturation of ribonuclease s.
Authors G.S.Ratnaparkhi, R.Varadarajan.
Ref. Proteins, 1999, 36, 282-294. [DOI no: 10.1002/(SICI)1097-0134(19990815)36:3<282::AID-PROT3>3.3.CO;2-6]
PubMed id 10409822
Full text Abstract
Figure 5.
Figure 5. Analysis of water in the high resolution structures. A: RMSD plot. B: B-factor plot.
Figure 6.
Figure 6. Ribbon diagram of RNase S coloured according to value of B factor of the main-chain atoms for (A) 5 M and (B) pH 2* structure. Regions of high, intermediate and low B (Å^2) are colored red, white, and blue respectively (scale inset). The figure was generated using the program INSIGHT-II.
The above figures are reproduced from the cited reference with permission from John Wiley & Sons, Inc.
Secondary reference #2
Title Crystallographic structures of ribonuclease s variants with nonpolar substitution at position 13: packing and cavities.
Authors R.Varadarajan, F.M.Richards.
Ref. Biochemistry, 1992, 31, 12315-12327. [DOI no: 10.1021/bi00164a005]
PubMed id 1463720
Full text Abstract
Secondary reference #3
Title Thermodynamic and structural consequences of changing a sulfur atom to a methylene group in the m13nle mutation in ribonuclease-S.
Authors J.Thomson, G.S.Ratnaparkhi, R.Varadarajan, J.M.Sturtevant, F.M.Richards.
Ref. Biochemistry, 1994, 33, 8587-8593. [DOI no: 10.1021/bi00194a025]
PubMed id 8031793
Full text Abstract
PROCHECK
Go to PROCHECK summary
 Headers

 

spacer

spacer