spacer
spacer

PDBsum entry 1d3a

Go to PDB code: 
Top Page protein metals Protein-protein interface(s) links
Oxidoreductase PDB id
1d3a
Contents
Protein chains
303 a.a. *
Metals
_NA
_CL ×2
Waters ×32
* Residue conservation analysis

References listed in PDB file
Key reference
Title Halophilic adaptation: novel solvent protein interactions observed in the 2.9 and 2.6 a resolution structures of the wild type and a mutant of malate dehydrogenase from haloarcula marismortui.
Authors S.B.Richard, D.Madern, E.Garcin, G.Zaccai.
Ref. Biochemistry, 2000, 39, 992. [DOI no: 10.1021/bi991001a]
PubMed id 10653643
Abstract
Previous biophysical studies of tetrameric malate dehydrogenase from the halophilic archaeon Haloarcula marismortui (Hm MalDH) have revealed the importance of protein-solvent interactions for its adaptation to molar salt conditions that strongly affect protein solubility, stability, and activity, in general. The structures of the E267R stability mutant of apo (-NADH) Hm MalDH determined to 2.6 A resolution and of apo (-NADH) wild type Hm MalDH determined to 2.9 A resolution, presented here, highlight a variety of novel protein-solvent features involved in halophilic adaptation. The tetramer appears to be stabilized by ordered water molecule networks and intersubunit complex salt bridges "locked" in by bound solvent chloride and sodium ions. The E267R mutation points into a central ordered water cavity, disrupting protein-solvent interactions. The analysis of the crystal structures showed that halophilic adaptation is not aimed uniquely at "protecting" the enzyme from the extreme salt conditions, as may have been expected, but, on the contrary, consists of mechanisms that harness the high ionic concentration in the environment.
Secondary reference #1
Title Protocol 21: the mpd-Nacl-H2o system for the crystallization of halophilic proteins
Authors S.B.Richard, F.Bonnete, O.Dym, G.Zaccai.
Ref. archaea : a laboratory 149 1995 manual ...
Secondary reference #2
Title Structural features stabilizing halophilic malate dehydrogenase from an archaebacterium
Authors O.Dym, M.Mevarech, J.L.Sussman.
Ref. science, 1995, 267, 1344.
Secondary reference #3
Title Mutation at a single amino acid enhances the halophilic behaviour of malate dehydrogenase from haloarcula marismortui in physiological salts
Authors D.Madern, C.Pfister, G.Zaccai.
Ref. eur j biochem, 1995, 230, 1088.
Secondary reference #4
Title Cloning, Sequencing, And expression in escherichia coli of the gene coding for malate dehydrogenase of the extremely halophilic archaebacterium haloarcula marismortui.
Authors F.Cendrin, J.Chroboczek, G.Zaccai, H.Eisenberg, M.Mevarech.
Ref. Biochemistry, 1993, 32, 4308-4313. [DOI no: 10.1021/bi00067a020]
PubMed id 8476859
Full text Abstract
PROCHECK
Go to PROCHECK summary
 Headers

 

spacer

spacer