spacer
spacer

PDBsum entry 1bw0

Go to PDB code: 
protein Protein-protein interface(s) links
Transferase PDB id
1bw0

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
412 a.a. *
Waters ×118
* Residue conservation analysis
PDB id:
1bw0
Name: Transferase
Title: Crystal structure of tyrosine aminotransferase from trypanosoma cruzi
Structure: Protein (tyrosine aminotransferase). Chain: a, b. Synonym: tat. Ec: 2.6.1.5
Source: Trypanosoma cruzi. Organism_taxid: 5693. Strain: tul 0. Other_details: the protein was purified from trypanosoma cruzi epimastigotes.
Biol. unit: Dimer (from PQS)
Resolution:
2.50Å     R-factor:   0.157     R-free:   0.214
Authors: W.Blankenfeldt,M.Montemartini,G.R.Hunter,H.M.Kalisz,C.Nowicki, H.J.Hecht
Key ref: W.Blankenfeldt et al. (1999). Crystal structure of Trypanosoma cruzi tyrosine aminotransferase: substrate specificity is influenced by cofactor binding mode. Protein Sci, 8, 2406-2417. PubMed id: 10595543 DOI: 10.1110/ps.8.11.2406
Date:
28-Sep-98     Release date:   27-Sep-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P33447  (ATTY_TRYCR) -  Tyrosine aminotransferase from Trypanosoma cruzi
Seq:
Struc:
416 a.a.
412 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.2.6.1.5  - tyrosine transaminase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Phenylalanine and Tyrosine Biosynthesis
      Reaction: L-tyrosine + 2-oxoglutarate = 3-(4-hydroxyphenyl)pyruvate + L-glutamate
L-tyrosine
+ 2-oxoglutarate
= 3-(4-hydroxyphenyl)pyruvate
+ L-glutamate
      Cofactor: Pyridoxal 5'-phosphate
Pyridoxal 5'-phosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1110/ps.8.11.2406 Protein Sci 8:2406-2417 (1999)
PubMed id: 10595543  
 
 
Crystal structure of Trypanosoma cruzi tyrosine aminotransferase: substrate specificity is influenced by cofactor binding mode.
W.Blankenfeldt, C.Nowicki, M.Montemartini-Kalisz, H.M.Kalisz, H.J.Hecht.
 
  ABSTRACT  
 
The crystal structure of tyrosine aminotransferase (TAT) from the parasitic protozoan Trypanosoma cruzi, which belongs to the aminotransferase subfamily Igamma, has been determined at 2.5 A resolution with the R-value R = 15.1%. T. cruzi TAT shares less than 15% sequence identity with aminotransferases of subfamily Ialpha but shows only two larger topological differences to the aspartate aminotransferases (AspATs). First, TAT contains a loop protruding from the enzyme surface in the larger cofactor-binding domain, where the AspATs have a kinked alpha-helix. Second, in the smaller substrate-binding domain, TAT has a four-stranded antiparallel beta-sheet instead of the two-stranded beta-sheet in the AspATs. The position of the aromatic ring of the pyridoxal-5'-phosphate cofactor is very similar to the AspATs but the phosphate group, in contrast, is closer to the substrate-binding site with one of its oxygen atoms pointing toward the substrate. Differences in substrate specificities of T. cruzi TAT and subfamily Ialpha aminotransferases can be attributed by modeling of substrate complexes mainly to this different position of the cofactor-phosphate group. Absence of the arginine, which in the AspATs fixes the substrate side-chain carboxylate group by a salt bridge, contributes to the inability of T. cruzi TAT to transaminate acidic amino acids. The preference of TAT for tyrosine is probably related to the ability of Asn17 in TAT to form a hydrogen bond to the tyrosine side-chain hydroxyl group.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20065117 I.Gonda, E.Bar, V.Portnoy, S.Lev, J.Burger, A.A.Schaffer, Y.Tadmor, S.Gepstein, J.J.Giovannoni, N.Katzir, and E.Lewinsohn (2010).
Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit.
  J Exp Bot, 61, 1111-1123.  
  21153519 P.Mehere, Q.Han, J.A.Lemkul, C.J.Vavricka, H.Robinson, D.R.Bevan, and J.Li (2010).
Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations.
  Protein Cell, 1, 1023-1032.
PDB code: 3pdx
17805988 B.Huang, B.Yi, Y.Duan, L.Sun, X.Yu, J.Guo, and W.Chen (2008).
Characterization and expression profiling of tyrosine aminotransferase gene from Salvia miltiorrhiza (Dan-shen) in rosmarinic acid biosynthesis pathway.
  Mol Biol Rep, 35, 601-612.  
18221517 J.R.Manning, E.R.Jefferson, and G.J.Barton (2008).
The contrasting properties of conservation and correlated phylogeny in protein functional residue prediction.
  BMC Bioinformatics, 9, 51.  
18621669 K.F.Stengel, I.Holdermann, P.Cain, C.Robinson, K.Wild, and I.Sinning (2008).
Structural basis for specific substrate recognition by the chloroplast signal recognition particle protein cpSRP43.
  Science, 321, 253-256.
PDB codes: 3deo 3dep
17683331 I.Matsui, and K.Harata (2007).
Implication for buried polar contacts and ion pairs in hyperthermostable enzymes.
  FEBS J, 274, 4012-4022.  
16640556 S.Sivaraman, and J.F.Kirsch (2006).
The narrow substrate specificity of human tyrosine aminotransferase--the enzyme deficient in tyrosinemia type II.
  FEBS J, 273, 1920-1929.  
12595727 J.K.Yang, C.Chang, S.J.Cho, J.Y.Lee, Y.G.Yu, S.H.Eom, and S.W.Suh (2003).
Crystallization and preliminary X-ray analysis of the Mj0684 gene product, a putative aspartate aminotransferase, from Methanococcus jannaschii.
  Acta Crystallogr D Biol Crystallogr, 59, 563-565.  
14680702 J.Vernal, J.José Cazzulo, and C.Nowicki (2003).
Cloning and heterologous expression of a broad specificity aminotransferase of Leishmania mexicana promastigotes1.
  FEMS Microbiol Lett, 229, 217-222.  
12717026 V.R.Sobrado, M.Montemartini-Kalisz, H.M.Kalisz, M.C.De La Fuente, H.J.Hecht, and C.Nowicki (2003).
Involvement of conserved asparagine and arginine residues from the N-terminal region in the catalytic mechanism of rat liver and Trypanosoma cruzi tyrosine aminotransferases.
  Protein Sci, 12, 1039-1050.  
11939774 C.G.Cheong, C.B.Bauer, K.R.Brushaber, J.C.Escalante-Semerena, and I.Rayment (2002).
Three-dimensional structure of the L-threonine-O-3-phosphate decarboxylase (CobD) enzyme from Salmonella enterica.
  Biochemistry, 41, 4798-4808.
PDB codes: 1kus 1lkc
11294630 K.Haruyama, T.Nakai, I.Miyahara, K.Hirotsu, H.Mizuguchi, H.Hayashi, and H.Kagamiyama (2001).
Structures of Escherichia coli histidinol-phosphate aminotransferase and its complexes with histidinol-phosphate and N-(5'-phosphopyridoxyl)-L-glutamate: double substrate recognition of the enzyme.
  Biochemistry, 40, 4633-4644.
PDB codes: 1gew 1gex 1gey
10880431 H.I.Krupka, R.Huber, S.C.Holt, and T.Clausen (2000).
Crystal structure of cystalysin from Treponema denticola: a pyridoxal 5'-phosphate-dependent protein acting as a haemolytic enzyme.
  EMBO J, 19, 3168-3178.
PDB codes: 1c7n 1c7o
11106504 L.Feng, M.K.Geck, A.C.Eliot, and J.F.Kirsch (2000).
Aminotransferase activity and bioinformatic analysis of 1-aminocyclopropane-1-carboxylate synthase.
  Biochemistry, 39, 15242-15249.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer